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L’analyse compleze est un domaine des mathématiques traitant des fonctions a valeurs com-
plexes (ou, plus généralement, & valeurs dans un C-espace vectoriel) et qui sont dérivables par
rapport & une ou plusieurs variables complezes.
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Chapitre 1

Fonctions Complexes de Variables
Complexes

1.1 Rappels sur les nombres complexes
On écrit |z| la norme du nombre complexe z dans C . De fait, I’application
(z1,22) € C — d(z1, 22) = |21 — 22]

est une distance.

Un nombre complexe est & 'origine un couple de réels et on lui associe les opérations
élémentaires :

— Taddition : (z1,y1) + (z2,2) = (z1 +x2, y1 + ¥2)

— la multiplication : (z1,y1) X (x2,y2) = (xlm —Y1Y2 , T1Yo + argyl)

exemple

(0,1).(0,1) = (—=1,0)

on nomme (0,1) =14 ol i est un nombre imaginaire qui se caractérise par ’équation i* = —1

Le couple complexe (a,b) se note (a,b) = a + ib

Il existe une coincidence entre R et I’ensemble des complexes de partie imaginaire nulle. En
clair un nombre complexe avec une partie imaginaire nulle (i.e. bi = 0) est considérée comme un
réel.

On appelle le conjugué d’un nombre complexe (a,b) le complexe : (a,b)* = a — ib

Le module d’un nombre complexe (a,b) se note :

I(a,b)|* = a® + b* = (a,b)(a,b)* = (a + ib)(a — ib)



Correspondance entre C et le plan

Forme polaire

Pour alléger I'écriture, on a I'habitude de poser

p=|z| =0M = \/ReQ(z) + Im?(2)

Re(z) = |z|.cos()

0 = arg(z) solution de { m(z) = |2|.sin(0)

a+ib = pcos(f)+ipsin(6)
p(cos() +isin(f)) = pe’



Formule de de Moivrel[]

2 = pe®?
. pnein9
2" = p"(cos(#) + isin(f)]big)"

2" =p" ( cos(nf) + isin(nh)|big)

Equations algébriques dans C

lelz" —a=0
" =a

0

. pnezne _ paezn

& p" = p, dans R
nb = 0, + 2km dans R (avec k € Z)

<:>p:\/ﬁpaet9:€+EQ7T
n o n

1.2 Définitions des principales notions en Analyse

Définition : z est au delta-voisinage de zy si {z € C tel que |z — 29| < 0} . On appelle le
delta-voisinage pointé de zg la condition suivante {z € C tel que 0 < |z — 20| < &}

Définition : on dit que zy est un point limite (aussi appelé point d’accumulation) d’un
ensemble S C C si tout § voisinage de zg contient des points de S.

Vo e RY ,3z € S tel que |z — 29| < d et avec z # 2

Définition : Un ensemble de points est dit fermé si et seulement si tous les points d’accu-
mulation de S est un point de S.
exemple : S = {z € C tel que |z| <1}

Définition : Un ensemble borné se caractérise par :

IM € R tel que Vz € S|z| < M

1. Abraham de Moivre (né le 26 mai 1667 a Vitry-le-Francois - mort le 27 novembre 1754 & Londres) est
un mathématicien frangais. De Moivre était un précurseur du développement de la géométrie analytique et de
la théorie des probabilités. C’est en 1707 qu’il trouva cette formidable formule que 1’on retrouve aujourd’hui en
Géomeétrie et en Analyse.



Définition : Un ensemble S est compact si et seulement s’il est fermé ET borné.

Définition : On dit que zg est intérieur 6 S si et seulement s’il existe un §-voisinage de
zg dont tous les points appartient ¢ S.

30 e RY tel queVze€C |z — 2| <d=>2€ 8

Définition : On dit que zg est extérieur a S si et seulement s’il existe un §-voisinage de
zo dont aucun des points n’appartient a S.

30 € RY tel queVze€C |z —2| <d=>2¢ S5

Définition : On dit qu’un point est un point frontiére si tout §-voisinage de zg contient a
la fois des points de S et des points n’appartenant pas a S.

Vo € Ry Jz1 €S et 2o & S tel que |21 — 20| <6 et |22 — 20| <6

Définition : Un ensemble S est ouvert si et seulement si il ne posséde que des points in-
térieurs.

Définition : Un ensemble est dit connexe si et seulement si on peut relier deux points
quelconques de cet ensemble par un chemin polygonal entierement contenu dans cet ensemble.

FiGURE 1.1: L’ensemble de gauche est connexe, celui de droite n’est pas connexe, car pour
joindre le point A au point B, il faut sortir de I’ensemble.

Théoréme de Bolzano Weirstrass
Tout ensemble infini et borné posséde au moins un point d’accumulation.

2. Bernard Placidus Johann Nepomuk Bolzano (5 octobre 1781 — 18 décembre 1848) est un mathématicien,
logicien, philosophe, théologien bohémien de langue et de culture allemandes, fils d’un Italien émigré a Prague.
Karl Theodor Wilhelm Weierstrass, habituellement appelé Karl Weierstrass, né le 31 octobre 1815 & Ostenfelde
(Westphalie), mort le 19 février 1897 a Berlin, était un mathématicien allemand, lauréat de la médaille Copley
en 1895.



1.3 Définitions pour I’Analyse Complexe

On définit la fonction f: C — C et z — w = f(2).
Définition : Si w est unique, on dit que la fonction f est UNIFORME. Si w est multiple on dit
alors que la fonction est MULTIFORME.

exmeple :
w = 2% = ici nous retrouvons une fonction uniforme .
1 . 2 . . . .
w = 22 < w est solution de w* = z — la fonction est multiforme, il y a 2 solutions .
|z]ei arg(z)/2
- |Z!ei(ng(z)+7f)

Une fonction de C dans C définit également une transformation. Prenons comme exemple la
fonction w = z2. En posant z = x 414y et w = w4+ iv, nous obtenons par identification u = 22 — y?
et v = 2xy. Sur le dessin ci-dessous, nous pourrons voir la transformation de cette fonction du

plan z dans le plan w.

4|
+ 2%

‘
\
T ag! ;
|
L=

U UN. S———

Définition : On dit que f admet une limite L en zg si et seulement si :

Ve e R, 3p e RY tel que |z — 29| < p=|f(2) - L| <¢

Nous allons maintenant aborder une notion importante de ce cours d’analyse : I'identification
d’une fonction ANALYTIQUEH On dit qu’une fonction est analytique si la notion de dérivée par
rapport a z & un sens pour cette fonction. On a alors :

f/(ZO) - lim f(20) — f(2)

z—20 zZ0 — %

3. De nombreux mathématiciens se sont intéressé a ces fonctions. Parmi eux, nous pouvons citer de Moivre,
Stirling, Euler, Gauss, Laplace, Poisson.



Les fonctions analytiques

Un malheur n’arrivant jamais seul, la fonction analytique doit également remplir les conditions

de CaucHy-RIEMANN]
Posons donc z = = + iy, et P et @ sont deux fonctions de R dans R. f(z) est analytique si

et seulement si :

f(z) = P(z,y) +iQ(z,y)

oP_0q . op_0Q
or Oy oy  Ox

ok sk SRRk Kk Rk sk SRR SRR SR Kk sk sk kR ok o
Démonstration : Les conditions de Cauchy-Riemann
Les conditions de Cauchy-Riemann sont nécessaires pour qu'une fonction complexe soir dérivable.

f'(z) = lim Fz0) = 1(2) & VeeRY,Ip e Ry telque |z—2| <e= f(z0) = (2)
220 20 — = zZo — %

—f'(z0)| <p

f(z) = P(z,y) +iQ(z,y)

avec z = x + 1y et 29 = xg + 1Yo

1. Ecrire f'(20) en fonction de P, Q,x,y, zo, Yo
2. Déterminer cette limite de deux facons différentes :
—z=x+ 1y
-~ 2=x0+ 1y
3. Montrer que les conditions de Cauchy-Riemann sont nécessaires pour que ces limites soient

identiques

zZ=xy+1iy

z=x+1iyp

Zy

4. Augustin Louis, baron Cauchy, né a Paris le 21 aott 1789 et mort & Sceaux (Hauts-de-Seine) le 23 mai 1857,
est un mathématicien frangais. Georg Friedrich Bernhard Riemann, né le 17 septembre 1826 & Breselenz, mort
le 20 juillet 1866 & Selasca, Italie, est un mathématicien allemand. Sous I'influence de Laplace, Cauchy présente
dans le mémoire Sur les intégrales définies (1814) la premiére écriture des équations de Cauchy-Riemann comme
condition d’analyticité pour une fonction d’une variable complexe.



1) On utilise l'expression de la limite dans laquelle on remplace f(z) par son expression

polynomiale.

F(z) = lim P(z0,y0) — P(z,y) +i(Q(z0,%0) — Q(z,y))
v 20—+ i~ 1)

2) 1 cas: z =z +1iyp

P(xo,y0) — P, y0) Q(zo,yo) — Q(x, yo)

f'(20) = lim +4 lim
T—TQ rog— T T—TQ ro— X
oP . 0
Fz0) = (o) i 22 (0,0

2°M¢ cas 1z = xg + 1Y

P(z0,y0) — P(x0,y) Q (0, yo) — Q(70,y)

f'(20) = —i lim + lim
Y=Y Yo—Y Y=Y Yo—Y
) oP 0

f'(20) = —i ny(xo,yo) + 822(96071/0)

3) La condition nécessaire pour que la limite de f/(zp) existe (et donc que la fonction f soit
dérivable) est I’égalité des 2 expressions trouvées au-dessus :

o°P _ 9@
oxr Oy
oP __od
oy Oz

sfokokok stttk sk ook ok sk sk stk sk sk sk ok ok sk sk skt ok sk sk skokokok sk ko ofokok ok ok

Définition : Si la dérivée f'(z) existe en tout point z d’un ensemble ouvert % alors f est

dite analytique dans Z%.

f sera dite analytique au point zg si et seulement si il existe un voisinage de zg en tout point
duquel f'(z) existe.

Les conditions de Cauchy-Riemann sont des conditions nécessaires, mais non suffisante a l’exis-

tence de f'(z). Cependant, si les dérivées partielles de P et QQ sont continues sur 'ouvert X

alors, les conditions de Cauchy-Riemann sont suffisantes.

10



Si f est analytique, P et @ satisfont les conditions de Cauchy-Riemann, on trouve alors les
équations suivantes :

0’P  0%Q 0*pP 0%Q . 0’P  9°P
o ot ZE don 25420
0%x  Oydx 0%y Ox0y 0%r 0%y
2 2 2 2 2 2
°Q_ P PQ_ P PQ PQ_

2z Oydz ¢ 2y Ozdy 0%x 0%y

P et @ sont des fonctions harmoniques Conjuguées.lﬂ

Les fonctions harmoniques conjuguées ont une propriété particuliére, elles forment dans un
plan, un réseau de courbes. On a donc :

P(z,y)=acR
Qr,y) =B R

P(x,y) et Q(x,y) définissent deux réseaux de courbes. La particularité est que ces deux réseaux
se coupent perpendiculairement dans la plan.

FIGURE 1.2: Exemple d’un réseau de courbes pour f(z) =1/z et avec P =a et Q = 3

Si f est analytique, f(z) est le résultat d’un calcul sur z et non pas d’un calcul qui passerait
forcément par Re(z),Im(z),|z|, ou Z. Les régles de dérivation d’une fonction analytique sont les
mémes que dans R, & savoir l'addition (u 4 v)" =« + ', la multiplication (uv)" = v'v + wv’ |
ete.

5. Vous remarquerez la similitude avec les équations de Laplace.

11



Quelques fonctions analytiques élémentaires
POLYNOMES f(2) = an2™ + an_12""1 + ...+ a1z + ag
RATIONELLES f(z) = 38
avec u(z) et v(z) deux fonctions polynomiales de z C’est une fonction analytique sur C
privé de { racines de v(z)} . Les racines de v(z) sont appelées les poles de la fonction f.

EXPONENTIELLE COMPLEXE On sait que pour y € R % = cos(y) + isin(y).

Les formules d’Euler nous donnent :

iy —iy Wy _ oty
cos(y) = % et  sin(y) = %
ef — eeriy _ exeiy
e = e”(cos(y) + isin(y))
e? = eftel?) (cos(Im(z)) + isin(Im(z)))

ez+ik27r ik2m _ e?

donc e* est périodique de période T = 2kw avec k € K

= e%e

Par extension nous pouvons en déduire les formes exponentielles suivantes :

iz =iz iz —iz
Sil’l(Z) = © 226 COS(Z) — %

Z_ A=z z —z
sh(z) = GTG ch(z) = %

RECIPROQUE DE L’EXPONENTIELLE on s’en sert généralement pour résoudre des équations
ef=A avec A € C
z=x+ 1y avec A = pif
e* = e%e™ = pe' = ”(cos(y) +isin(y)) = p(cos(d) + isin(f))

z = n(p)
ﬁ{ y=0+2krm

Par définition, Log(z) est la réciproque de la fonction e®. Attention cependant a ne pas le
confondre avec la fonction log(z) qui est la fonction logarithmique de base 10. Ici Log(z) re-
présente la fonction réciproque, on la trouve ainsi :

Log(z) = In(]z]) + i(arg(z) + 2km)

12



1.4 Rappels sur les fonctions trigonométriques circulaires et hy-

perboliques
) eiz —e iz e 1 efiz
sin(z) = 5 cos(z) = 5
z_ A=z z —z
sh(z) = ¢ 2e ch(z) = ¢ +26
z —z
cos(iz) = ¢ 4_26 = ch(z)
—2z Az Z__ a2
sin(iz) = ¢ 5; o _ile 572 ¢) = ish(z)

{ cos(iz) = ch(z) o { ch(iz) = cos(2)

Figures trigonométriques d’un complexe en partie réelle et imaginaire

Prenons le complexe z = = + iy avec (z,y) deux réels. Nous pouvons exprimer les fonctions
trigonométriques cos et sin ainsi :

sin(z) = sin(x + iy) = sin(x) cos(iy) + cos(x) sin(iy)
sin(z) = sin(x)ch(y) + i cos(z)sh(y)

De méme pour le cosinus, on obtient :

cos(z) = cos(x)ch(y) — isin(x)sh(y)

RAPPELS

« L’erreur est humaine, seule la perséverrance est diabolique ; I'idéal étant de ne pas persé-
verrer dans Uerreur. » Guy Cathebras

13



Fonctions trigonométriques inverses

arcsin(z) : c’est la fonction qui donne TOUTES les solutions en Z de 'équation sin(Z) = z.
En conséquence, arcsin est multiforme.

arccos(z), arctan(z), argsh(z), argch(z), argth(z) : toutes ces fonctions sont multiformes ! Comme
les fonctions trigonométriques sont des combinaisons linéaires de fonctions exponentielles,
on en déduit que les fonctions trigonométriques inverses sont des combinaisons linéaires de
la fonction Log (souvenez-vous, la fameuse fonction qui n’est ni le logarithme népérien, ni
le logarithme de base 10!).

1

arcsin(z) = - Log <iz +V1-— z2>
i
1

arccos(z) = ~ Log (z +v22 - 1)
i

1 141
arctan(z) = §L0g<1 ks ZZ)
i —iz

argsh(z) = Log (z +V1+ z2)

argch(z) = Log (z + V22— 1)

l—i—z)
1—=z2

1
argtan(z) = §L09<

1.5 Notion de Singularité

En mathématiques, une singularité est en général un point, une valeur ou un cas dans lequel
un certain objet mathématique n’est pas bien défini. C’est-a-dire qu'une singularité est un point
ol f(z) n'est pas analytique. On appelle ces points des POINTS SINGULIERS. Considérons la
fonction suivante :

f(z) ==

| &

0
) _____Cc:L||:L|rE




points de branchement et coupures : le point de branchement est le point commun
a toutes les coupures d’une fonction. Ce n’est pas une singularité isolée, la fonction est
multiforme, son extrémité est une coupure. Ici le point de branchement est ’origine

= s fea) ==

ZAr = pei(91+27r) _ f(ZA’) — (ZA’)1/2 _ \/ﬁei(%""n

points singuliers isolés : 2z = zj est un point singulier isolé si et seulement si il existe un
voisinage de zp ne contenant aucun autre point singulier. Dans ’exemple ci-dessus, tous
les points de coupure sont des points singuliers isolés.

poles : on dit que zp est un pdle d’ordre n si et seulement si il existe un n € N tel que
lim (2 —20)" f(2) = A # 0 # co. Un pole est une singularité isolée.
0
singularité supprimable le}rrzl (z — zo)n f(z) = A # oo. C’est une limite finie, la fonction
0
est prolongeable par continuité en zp.

singularité essentielle les points singuliers essentiels sont tous les autres point. La limite
de f(z) n’existe pas.

15



Chapitre 2

Intégration dans le domaine complexe

2.1 Intégrale curviligne

f(2) est une fonction analytique sur 'OUVERT Z. La courbe € est inclue dans %, mais at-
tention, ce n’est PAS la représentation de la fonction f! f(z) est continue en tout point de €.

Les points z1 & z, appartiennent & la courbe %. L’ensemble des wy, sont également sur la
courbe, et se trouvent sur U'intervalle [z;_1, 2 ].
On a alors la somme suivante :

n

Sy, = Z(Zk — 2k—1)f(wr)

k=1

On nomme 'INTEGRALE CURVILIGNE de f(z) le long de la courbe % la limite suivante :

lim S, /f

Essayons maintenant de simplifier ’expression de cette intégrale a4 I’aide du module et de
I’'inégalité triangulaireﬂ

1. petit rappel de l'inégalité triangulaire : |z + y| < |z| + |y|

16



1Sl < 2k — 2rea] X | (wr))

k=1

n
<Y Ik — 2] x sup [ £(2)]
ke

k=1
| [ 1| < 1) x sup 11 (2)

2EC

n
Remarque : ) |z — 2zx—1| tend vers la longueur de la courbe que 'on note ici L(%).
k=1

2.2 Intégrale curviligne réelle

Soient P et @, deux fonctions de R? dans R.

Domaine de définition de P

/

/waM+Qmmw
€

On ne dira jamais assez que 'intégrale ne dépend pas du chemin parcouru, mais seulement de
ses extrémités. L’intégrale précédente n’est vraie que si cette quantité est une différentielle totale

exacte.

Calcul
Si % est continuement différentiable, et si % est définie par :

¢ = {(z,y) eR? telque z=u(t);y=uv(t) |t <t <t}

dr = (t)dt

17



to

[= / (P(u(t),v(t))u'(t) +Q(u(t),v(t))v'(t))dt

Maintenant, nous alloins déterminer quelle est la relation entre 'intégrle curviligne réelle et
complexe. Soit la fonction f suivante :

f:C—-C
z=x+iy— f(2) = P(z,y) +iQ(z,y)
Soit v une courbe continue dans C. Soit I = f7 f(2)dz . Posons dz = dx + idy.

Attention : la relation entre dx et dy est imposée par 7.
Ezxemple :

v={z=2+iy e CIW(x,y) = a}
oW ow

—dr+ ——dy=0
Or T oy 4

[= L (P(az,y) +iQ(a:,y)) (dz + idy)

I= / P(a,y)de — Q. y)dy + i / Q(a,y)dz + P(z,y)dy
Y Yy

Une intégrale curviligne complexe est donc composée :
— d’une partie réelle donnant lieu a une intégrale curviligne réelle
— d’une partie imaginaire donnant lieu & une intégrale curviligne réelle

2.3 Propriétés des intégrales dans C

2.3.1 Linéarité

V(A p) € C? L ()\f(z) + ug(z)>dz = )\/

~

£zt [ g(a)ds

v

2.3.2 Sens de parcours et relation de Chasles[]

[ fGraz=— [ (e
//\ f(z)dz = /A f(2)dz+ | _ f(z)dz
AB AC CB

|| #e1ee] < smplsex £a)

zey

Il faut retenir les méthodes de majoration des modules de I'intégrale, nous en ferons une
consommation immodérée.

2. Michel Chasles (15 novembre 1793 - 18 décembre 1880) était un mathématicien frangais. On lui doit d’im-
portant travaux en géométrie projective. Il regut la prestigieuse médaille Copley en 1865.

18



2.3.3 Cas particulier d’un lacet fermé

On l'appelera "contour", c¢’est une boucle.

r

intérieur

Y,
/ h

extérieur

extérieur .
extérieur

2.3.4 Formule de Green-Riemannf
Soit un domaine D de R? délimité par un contour I'. Soient deux fonctions de R? dans R que

I'on nommera P(z,y) et Q(x,y).
L’objectif est de calculer 'intégrale suivante :

I= ffs %d:ndy

I—/d(/w) aﬁdx)d
N / oty O 4

t; = Q(z2(y),y) — Q(x1(y).v)

3. George Green (juillet 1793 - mai 1841) était un physicien britannique. Il est Vauteur de Fssai sur l’application
de 'analyse mathématique aux théories de l’électricité et du magnétisme en 1828. George Green n’a passé qu'une
seule année & ’école dans son enfance. Il apprit les mathémtiques seul dans le moulin de son pére dont il avait
hérité en 1829. Il intégra ’Université de Cambridge en tant qu’étudiant en 1833 a ’age de 40 ans, il en sort

diplomé 4 ans plus tard.

19



d —

Iy

yd I.
D z
(
c ! T~
X
() x;(¥)

I'y et I'y représentent respectivement les courbes 1 (t) et xa(t).

d d d
1= [ (Qlaato)w) - Qlart).) )y = [ @aalw)0)y ~ [ Qar(w).v)ey
Q(w,y)dy - Q(x,y)dy
Iy I
| I

D’ou finalement :

// ‘ZQd:cdy:/Q(w,y)dy
// 9Z drdy = — /nyd

La formule de Green-Riemann se retrouve en soustrayant les deux équations précédentes :

/ @_‘lp dz dy:/P(x,y)derQ(x,y)dy
oy r

>3k ok sk okosk ok sk ok skook sk okosk ok sk okok ok sk okok ok sk skok ok sk kok sk sk okokosk sk kok skosk kokosk sk kokoskoskokokskokok

APPLICATIONS

Calcul d’une aire plane
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P(z,y) —yigyz—l
0Q
= B ::1
Qlz,y) =z = -

/acdy ydx—// (1—(— dmdy—?//dmdy
D

Aire de D = 5 fr xdy — ydz
Coordonnées polaires

x = pcos(0) = dx = cos(0)dp — psin(0)do
y = psin(0) = dy = sin(0)dp + p cos(0)do

Aire du domaine :

1

D= 3 / (p cos(0) sin(8)dp + p? cos(#)?d — p cos(#) sin(8)dp + p> sin(9)2d9>
r

(D) = % /F p2dh

Exemple d’application : ’aire d’un disque

On donne I' un cercle de centre O l'origine, et de rayon R. En coordonnées polaires, nous
avons p et 6 variant de 0 & 27.

2
/R df = 277]0 = r?
Sk sk sk sk sk sk sk sk sk sk sk R sk KKK KKK K K Rk kR sk skosk sk skoskoskoskosk skosk sk skoskoskoskoskoskoskoskoskoskoskoskoskkok

2.3.5 Calcul de longueur d’arc

Nous avons un arc de 4 a B.
:/dS:/ dx? + dy?
r r
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dy —

ds? = dx? + dy?

dx

3 cas de calculs différents pour la longueur d’arc :

Cas n°1

~ est défini comm la courbe représentative d’une fonction f: R — R.

7= {(@y) e Ry = f2)}

dy = f'(z)dx = da* + dy* = (1 + f'(z)*)dx
zp
L) = [ VI @R
zA
Cas n°2 Coordonnées paramétriques
— 2|0 — C o — .
v={(@y) eR%a =a(t); y = y(t) t € [tasts]|
=dr=12'(t)dt = ds=+/2'(t)?+y(t)2dt
dy = v/ (t)dt
123
L(y)= [ Va'(t)*+y/(t)%dt
ta

Cas n°3
7= {(2.y) € R2fx = p(0) cos(0) ; y = p(0) sin(0) 0 € [0:0)]}

p(8) cos(6) )| = p(6) cos(68) — p(6) sin() 21)

(o(®) sin(e))' — p(6) sin(0) + p(6) cos(0) (2.2)
1.1)2 = 0/(0)? cos(8)? + p(0)%sin(6)? — 2p(0) ' (8) sin(h) cos(h)
(1.2) = 0/(0)?sin(0)? + p(0)% cos(0)* 4 2p(0) ' (8) sin(8) cos(h)



(11)% +(1.2)* = p'(0)* + p(0)

O
L(v) = i V' (0)2 + p(0)do

2.3.6 Probléme fondamental

Nous allons chercher a calculer 'intégrale d’une fonction z" sur un contour fermé quelconque
entourant UNE fois l'origine.

n ,ind

/ 2"dz
r
On pose z = pe? = " = ple

dz = e"dp + ipe'®df

I = / pneine (e’iedp + Zpewd@) — / pne’i(n-f—l)edp + ,ipn-i-le’i(n-f-l)odg
T T

CAS GENERAL n # —1

I = / pnei(n-l—l)@dp + Z-pn+lei(n+1)9d9
r

La formule de Green-Riemann pour 'intervalle curviligne marche aussi bien en coordonnées
polaires que cartésiennes (¢f Annexe B).
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1= [ P.0)dp+ QUp.0)as

I—// ‘lQ—(lP dpdo

Q(p,0) = ip" 1T G = i(n + 1)prei(n P

P(p,0) = preitD0 0D — (4 1) prein 1)

En conclusion, nous obtenons Vn # —1,1 = 0.

CAS PARTICULIER n = —1

On trouve donc I = fF %p + idf

Nous considérons maintenant la fonction I'y = {2 € Ctelquez = p(#)e? avec p : R — R*
continue et 27 — priodique. Le long de I'y, on peut alors écrire dz = (p/(0)e? +ip(0)e?)df. Pour
faire le tour de l'origine, il faut faire varier 6 de 0 a 2.

2m
d
:/z /p et +Z/;0) ”
r, % 0)et
0
27
I:/ (A
o(
0
d
:[1 |+19] = [ Zion
r,
= %:ﬂw
r,

Remarque : Nous pouvons généraliser cette formule avec I = i2km, avec k le nombre de
tours autour de l’origine. Par exemple, si k = 3, la fonction effectue 3 tours, nous trouvons donc
= i6m. Et si la fonction fait un tour en sens inverse, on a alors k = —1, d’ou I = —i2w.

2.4 Théoréme de Cauchy

f est une fonction analytique dans un ouvert simplement connexe contenant entiérement un
contour I' avec I'" qui délimite un domaine D.
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FIGURE 2.1: Le cas a) est simplement connexe. Le cas b) est multiplement connexe, car on ne
peut pas passer d’un chemin & un autre sans sortir de I'ouvert
Mais qu’est-ce qu’un ouvert simplement connexe ? Ci-dessous se trouve une explication rapide.

« Dans un ouvert multiplement connexe, il y a des trous. » définition terre & terre de Guy
Cathebras.

FIGURE 2.2: [ f(2)dz

Posons z = = + iy et f(z) = P(x,y) +iQ(z,y)
dz = dzx + idy

/F f(2)dz = /F Pla,y)de — Q(a,y)dy +i /F P(e,y)dy + Q. y)da

e s

Si f(z) est analytique sur D, nous retrouvons a ’aide des conditions de Caychy-Riemann les
expressions suivantes :

oP  0Q
dr Oy
oP  0Q
dy oz
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Chapitre 3

Formules Intégrales de Cauchy

Soit f : C — C une fonction analytique sur et & I'intérieur d’un contour I'.

I

I(a) = /(z) dz

r<—a

f(z)

zZ—a

Posons alors la fonction

9(z) =

g est une fonction analytique sur le domaine délimité par I' privé de 0. Nous pouvons remarquer
que g(z) présente en a un poéle simple.
Soit B un cercle de centre a et de rayon §.

Joteraz = /ﬂ 9(2) dz = I(a)
Ha) = z—a /f z—a ) dz
/f z—a d + 55(—21

[0 e g0 [ = e [




w=z—a = dw= dz

Sla) dz =27 f(a)

ﬁZ—CL

[Letw,
Jé] zZ—a

On rappelle que S est le cercle de centre a et de rayon 6.
[ L0250 ) < | HL=110
zZ—a

z—a
L(pB) représente la longueur du cercle 8, autrement dit la circonférence du cercle :

x L(B)

< sup
zeB

L(B) =2nRg = 270

de plus, on sait que |z —a|] =6

[Fae

En faisant tendre § vers 0, on obtient :

JRES Py
g zZ—a
é/ﬁf(zi:i:(a) dz=0

Finalement, on obtient la formule suivante :

< sup|7() ~ fla)] x 22 = omsup|§(2) ~ f(a)
z€B 2€pB

1z)

TR —a

dz =27 f(a)

3.1 Généralités

3.1.1 Dérivée de l’intégrale de Cauchy

) i L@ =

b—a a—>

a et b appartenant au domaine délimité par I', on a :

217r fF f(fi dz — ﬁ r ]zt(—zg dz

b—a a—>b

Fla) = = tim [ L) <Zia— ! )dz

24T b—a Jr a — b z—b
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1 1
Or -3 =

z—b—z4a
z—a —

_ a—b
(z—a)(z—b) — (2—a)(z—b)

f'(a) = 1 lim /()

I g
2im bsa Jp (2 —a)(z—b)

On peut faire tendre b vers a sans aucuns problémes, on peut méme remplacer b par a. Ce qui

nous revient au final :
1 f(z)
!
= — d
fa) 247 /F (z—a)? ?

3.1.2 dérivée seconde et n-iéme de l’intégrale de Cauchy

") = 1im 10 = (@)
fla) = %E}}L b—a
neoy L . / f(z) 1 _ 1
! (a)_%w%l—{% ra—b\(z—a)> (2—10)? dz
Or, nous savons que (zfa)g - (Zjb)z = (a(;li)gzz(;(f;gg))

d’ot finalement, ’expression de la dérivée seconde :

f//(a)_ 1 lm/r(2z_(a+b))f(z) dz

T 20 ba (z—a)?(z —b)?

f//(a) _ 1 2(’2 B a)f(z) dz

T2 Jr (z—a)t

" 2 ?

Pour généraliser, nous allons chercher & déterminer quelle est la forme de la dérivée n-iéme
de la fonction f.

p- it (- ) s (S )

Rappelons maintenant de cette équation :

n
X" _y" = (X _ Y) ZXn—kyk’—l
k=1

E:ly—rilza—b k&j— a)*(z —b)"
3 z—a)" F(z—q)1!
E:k-zl( ) ( ) :n( _a)nfl _ n
(z — a)?n (z — a)?n (z — a)*t1
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D’ou finalement :

F®(a) = 2 /F 3f(2) 4,

" 2im Jr (z—a)?
32| .

Nous pouvons donc maintenant généraliser et nous obtenons la magnifique formule suivante
pour la dérivée n-iéme de f :

f(n)(a)_ n! /F( f(Z) dz

" 2im Jr (2 — a)nt!

3.2 Conséquences

3.2.1 Les inégalités de Cauchy

Considérons une fonction analytique sur et a l'intérieur du cercle € = {z € C tq |z—a| =71}

‘f (a)} 2 /5» (z —a)ntt dz
n ! f
‘f( )(a)’ = ;Lw X 2mr 21615 r”(ﬁ
!
£ (@)] = Zsup ()|
2€C

3.2.2 Théoréme de Liouville
Liouville[l] :

Toute fonction entiére et bornée est constante

Considérons un point a le centre d’un cercle € et de rayon r.

1 M
| < = sup|f(2)| < —
T 2¢% r

|f'(a)

Il existe M € R tel que pour tout z nous ayions |f(z)| < M.
Comme r peut étre rendu aussi grand que l'on souhaite, on trouve : f'(a) =0 Va € C

1. Joseph Liouville (né en 1809 et décédé en 1882) était un mathématicien francais. Liouville fonda en 1836 le
Journal de mathématiques pures et appliquées qui demeure aujourd’hui une référence dans ce domaine. Il publia

des textes dans de nombreux domaines des mathématiques, en géométrie différentielle, en topologie différentielle,
mais surtout en analyse complexe.
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3.2.3 Théoréme de Gauss sur la valeur moyenne

Soit ¥ un cercle de centre a et de rayon r. f est une fonction analytique sur et a 'intérieur
du cercle ¥. Nous avons donc :
1 z
f@=g- [ I a

2w Jy z—a

On pose (z —a) =re? = z=a+re?
dz = rie’? do

On parcourt % en faisant varier 6 de 0 a 2.

0:27rf( i

1 a+re ( ig)
a) = — —— (4ire’) do
f(a) 29 ret?

0=0

Nous venons de passer d’une intégrale complexe & une intégrale réelle contenant des nombres
complexes... je sais c’est subtil.

27
f(a) = % / f(a+re? db
0

f(a) est la moyenne des valeurs de f sur le cercle €.

3.3 Développement en série
EXERCICE INTRODUCTIF

RAPPEL

Développement limité
1 2 3 4
- + z _I_ z _|_ 2
1—2z

Faire le développement en série pour les trois domaines suivants de :

1 1

z—1 z-2

SEARAL

2%

2 b} A, ) AAA AR, > >
é‘ by A2 \)}\13:\)\))}\; 111}}) 2 q‘ S 2
Y. §\= 22 g: A \g: AAADAAL
S S D 1<l
3 3 ,;Q% Dy 1< [zl<2
b & S
V) % $‘ %“‘ “i&l D32<|Z|
) 2 >y
SR S
>y 2 >
@:s 2 % ii}‘}\‘ %
2 }uq \§ a3 33
wé\‘ %.
383
993
N
vy

ygéf“
m;:gng«.é« ARARS

vy
%
2
BRREBRIRRRR

o,
oy %.}

w
—_



Sur le 1 domaine D,

1 1 1 (—-1/2)
f(z)= - = — B
z—=1 2z2-2 (-1)(1-2) 1-3
1 2 22
f(z):—(1+z+z2+---)+5(1+§+Z+---)
1 z 22 23
I [ T B B B
1) e U
1 3z 722 1523
fley=—2 - — -

Sur le 2™° domaine D,

1 z
1<|s]<2 = 7<‘7<1
<Jz] < 5= |5 =
1 1 1 1
IO = rop e i
1 1 1 1 1 I
e O T N N RN NI (B ST N A A T
f(2) z<‘+z+%+d3+ >+2<-+Z+4+—8+ >
72 FERUNE NS S R S SN
Z)=- - J— J— R — — — — R R
2423 22 2 2 4 8 16 32

C’est le développement en série de LaurentE]; il se caractérise par la présence de puissance
négative de z.

Sur le 3™° domaine Ds

£(2) 1>< 1 1>< 1 11+1+1+1+ 11+2+4+8+
z 1-1/2 =z 1-2/z =z z 22 28 z z 22 28
1 3 7 2" —1
fO =g m a -
Nous retrouvons encore un développement en série de Laurent.
3.4 Suites et Séries de fonctions
Soit u1(z),u2(z), - - - un(z) une suite de fonctions définies et uniformes dans une région D de

C. On dit que u,(z) converge vers U(z) si et seulement si
Ve e R, N €N telque n> N = |u,(2) —U(z)| <e

Ul(z) est la limite de la suite (u,(2)),cyn- En général, nous avons N dépendant de z.

2. Pierre Alphonse Laurent (1813 - 1854) est un mathématicien frangais connu pour la découverte des séries
de Laurent. Cette recherche était contenue dans un mémoire soumis au Grand prix de I’Académie des Sciences en
1843, mais sa candidature étant trop tardive, l’article n’a jamais été inscrit au prix.
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3.4.1 Le domaine de convergence

C’est ’ensemble des valeurs de z telles ue la suite converge.

3.4.2 Série de fonction

Sn(2) =) uk(2)
k=1

Une condition nécessaire, mais non suffisante, pour que S,(z) converge vers S(z) est que
Uk(z) converge vers 0.

3.4.3 Séries entiéres

[o.¢]
ap 4+ a1(z — z0) + CLQ(Z — 20)2 +---= Zan(z — Zo)n
n=0

De maniére évidente, cette série converge vers ag pour z = zg.
En général :

JR € RY telque |z — 29| < R = serie converge
|z — 29| > R = serie diverge

R est le rayon de convergence. On appelle disque de convergence le disque D suivant :

D ={z€C telque |z— 2| < R}

3.5 Théorémes sur suites et séries

On pose ces théorémes comme étant des axiomes, mais nous savons les démontrerﬂ

1. la limite d’une suite est unique

2. une suite ou une série complexe est convergente si et seulement si la partie réelle ET la
partie imaginaire convergent

3. la série entiére :
— converge uniformément et absolument sur son disque de convergenceﬁ
— peut étre dérivée terme & terme sur son disque de convergence
— peut étre intégrée terme & terme sur son disque de convergence
— est continue et uniforme sur son disque de convergence

3.6 Deéveloppement en série de Taylor

e so0it f une fonction analytique et uniforme dans un domaine D de C
e soient z et zg deux points de D
e soit ¢ un cercle de centre zp et de rayon ¢ > |z — 2|
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— d
/) 21 /(C w—z "
1 1 _ Z— 20
w—z w—z (w—2z)(w—2)
1 1 zZ— % 1
()
w—z w-—2 w—20) w—z
1 _ 1 +<z—z0>< 1 +<z—zo> 1 >
w—2z w-—2z w—20/) \w— 2 w—20) w—2z
I | z— 2 (z — 20)? 1
w—2 w—z (w—2)2 (w—2)?2" w-z
I | z— 2 +(z—z0)2 (z — 20)3 " 1
w—z w—z (w—2)2 (w—2)3 (w—2)3" w-z
1 n—1 . - n
_ Z (z zol?€ )+ (z — 20) " 1
w—z kzo(w—z0)+ (w—2z)" w-—z
Nous allons maintenant utiliser la 1ére formule intégrale de Cauchy :
n—1 k
_ 1 )
2) = Z (= 'Zo) f(w) dw 4+ —— (2 — 20)" f(w) dw
= g W—2 2im Joo (W — z0)™"(w — 2)
” )
iy [ fw)
@) 2im [g (w — z)ntL v
Donc
0 L[ (=) (w)
=20 (W) 4 dwh
— 2im Jg (w— 20)"(w — 2)

3. a vous de jouer!

4. I'absolue convergence implique la convergence
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Si nous pouvons trouver a quelle condition lim X, (z) = 0, nous aurons trouvé le domaine
n—oo

de convergence de la série entiére. Pour cela, on pose :

1 (z — 20)" f(w)

X = d
n(2) 2im Jo (W — z0)™(w — 2) v
1 — 2o)" 1 — "
]Xn(z)\:— / (Z ZO) f(w) dw| < — sup 2= 20 |f(w)’ < 27 4
27 | Jg (w — 20)™(w — 2) 2T wew \|W — 20 lw — z|
avec )
- 5
lw — 20|
Or nous savons :
|z — 20| <1
lw — zo]
Par ailleurs, sur ¢ nous avons |f(w)| < M ; ainsi que |w — z| = |w — z0 — (2 — 29)|. On

applique ensuite I'inégalité triangulaire, et nous obtenons :

|lw = 20| = |2 = 20]| < [(w = 20) = (2 = 20)| < |w = 20] + |z = 20

donc :
d— |z — 20| < |w — 2

Finalement, nous trouvons :

X)) < 5

———— 0 avec y<1
— |z — 20|

Ainsi : lim |X,(2)|=0 silz— 2z #0

n—-+oo

Une fonction f analytique dans un domaine D est décomposable en série de Taylor autour de

tout point zg de D.
2 (4
1) =Y T
k=0

Cette série converge sur tout disque centré en zg, entiérement contenu dans D.

Dans le cas d’une fonction méromorphelﬂ le rayon de convergence est la distance de zy au point
singulier le plus proche.

Ezxemple :
3 5
z z
arctan(z) =z — — + — — - -- z| <1
()=z-2+2 g
1 1412
tant =—L
arctant(z) 5 Og<1—iz>

5. Une fonction méromorphe est une fonction analytique et uniforme sur un domaine D a l’exception d’un

ensemble dénombrable de points singuliers isolés.
Un ensemble dénombrable est un ensemble qui peut étre mis en bijection avec les réels (par exemple R est

indénombrable tandis que N est dénombrable).
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3.7 Séries de Laurent

f est analytique et uniforme dans une couronne circulaire D.

D ={zeC telque p1 <|z— 20| < p2}

&

y

Zg

Nous allons considérer I' = o — 1.

D’aprés Cauchy, nous avons : [, f(z)dz =0
D’aprés la 1ére formule d’intégration de Cauchy :

f(z)z%/FLiu)dw
1

w z
f(w) 1 [ f(w)
1G) = 5 Ww_zdl"‘ﬂ/w_zdw
1 f(w) L[ f(w)
f(z)—% ,wa—zdw—i_ﬂ[nz—wdw

Rappel :

o S (Z—Zo)k +(Z_Z0>n>< 1
w—z P (w — zg)kt1 (w—20)" w—2z
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1

1 flw 5 1 1 1 w — z0)" f(w
%r[ylz(—zldw: (Z(z—zo)"““%T[Yl(w_zo)kf(w)dw>+m[/1 (i—zo)?l)(ziu)ﬁ dw

k=0

b Si 5 L % dw tend vers 0 si lorsque |z — zp| < p2 quand n tend vers +oc.

Si 5 f% % dw tend vers 0 si lorsque |z — 29| < p1 quand n tend vers +oo.

En clair, ces deux quantités tendent vers 0 si z € DY}

-1

1 1

o f(w) = Z (Z — Zo)p,/ 717(10) 1 dw

2T J gammay 2 — W D 211 Jy, (w — 20)P
On a effectué un changement de variable, nous avons donc maintenant : p = —(k + 1) d’ou

également k = —(p + 1).
On a alors : N
o0
1 f(w)
— SEPVIRY. el
f(z) = k_z:oo(z 20) 5im /gamma (w0 — 2g)FF1 dw

~ étant un contour, entiérement contenu dans la couronne D, entoure une fois zg.

Remarque : f est analytique sur D (v est un contour tracé dans D entourant une fois zg),
donc d’aprés Cauchy on a :

(U})dw:/ f(w) dw:/f(w)dw
g g

W= 20 , W — 20 w — 2z
On a donc N
o0
1 f(w)
k
z) = z—29)"— | amma———— dw
1= 3 o' [ ommar T
k=—0o0
Soit : a a
-2 -1 2
z)= -+ + +ap +ai(z —20) + a2z —20)" + -
f(z) Gl a 1(z — 20) + a2(z — 20) .
~~ partie analytique
partie principale
C’est donc le développement en série de Laurent, avec ay = % f7 # dw.

6. cf : 8.6 Développement en série de Taylor pour la démonstration
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Développons en série de Laurent autour d’un point singulier isolé (sur un disque
épointé)

Soit f une fonction analytique et uniforme sur un domaine D a ’exception d’un point singulier
isolé zg.

* si zg est un poéle d’ordre n : la partie principale du développement en série de Laurent
posséde EXACTEMENT n termes.

* si zg est un point singulier supprimable : la partie principale du dévelopement en série de
Laurent est NULLE.

* si zp est un point singulier essentiel : la partie principale du dévelopement en série de
Laurent est une INFINITE de termes non-nuls

3.8 Résidus

Soit f une fonction développée en série de Laurent sur un disque épointé (de centre zg). Soit
7 un contour entourant zy.

/ f(2) dz = 2ima_1 = 2imRes(f, 20)
.

On nomme a_; le RESIDU DE LA FONCTION au point zp; on le note Res(f, zo).

3.8.1 Théoréme des Résidus

Soit f une fonction méromorphe dans un domaine D.

n

/f(z) dz = Z/ F(z) dz = 3 (inRes(f, 2))

k=1""k k=1

3.8.2 Calculs pratique des résidus

Nous allons chercher des moyens simples pour calculer le terme a_; du développement en
série de Laurent autour d’un point singulier isolé.

38



[*] si zp est un podle simple

a_
f(z) = : +ap+ai(z—z)+---
Z— 20

limz — zof(2) = o0

limz — zo(z — 20) f(2) = a_1

Si f est une fraction rationnelle, nous pouvons simplifier le calcul. Nous avons donc zp un
pole simple, le numérateur peut donc s’écrire P(z) et le dénominateur Q(z) avec P(zp) # 0, et

Q(z) = (2 — 20)Q1(2) et Q1(2) # 0.

_ P(»)
f(Z)—— CQ(Z)
= 11m (2 — z Z) = lm P(Z) P<ZO)
tor =i e 20 = 56 T Q)
On a
Q(2) = (2 — 20)Q1(2)
Q'(2) = (2 — 20)Q1(2) + Q1(2)
Q'(20) = Q1(20)
Donc :

[] si zp est un poéle multiple

= —n ™ e a-1
f(z)i(z—zo) + +z—z0

+ag+-

(z—20)"f(2) = a—n+a_(_1y+ - +a_1(z— 20)" " +ao(z — 20)" + - -

|

((z—zo)”f(z)) —(n—1)! % a_ +% % ap(z — 20) + -+ -

dn—l
dznfl

lim ( ;:n_ll ((z - zo)"f(z)>> =(n—-1)!xa_

(n _1 1! X Zli_)rgo (;;_11 ((z - Zo)”f(z))) =a_,
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[*] si zp est un point singulier essentiel

Il n’y a pas de moyen systématique d’obtenir le résidu (¢a ne veut pas dire que c’est difficile!!).
Il faut déterminer la série de Laurent.

exemple : e!/# autour de z = 0

2 4
w _ w” B3ap, W
e —1+w+2!+w3.+4!+
1 1 1
1/z _ [T N TN
¢ 71+z+2’22!+z33!+
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Annexe A

Construction d’une fonction analytique

Posons Pi(z,y) = e *(zsin(y) + ycos(y))

1.

ANl O o

A quelle condition P;(z,y) peut-elle étre la partie réelle d’une fonction analytique de z =
x+iy?

Vérifier cette condition

Construire une fonction P, semblable & P, qui vérifie la condition ci-dessus

Déterminer Q(x,y) telle que f(z =z +iy) = P(z,y) + iQ(x,y) soit analytique

Exprimer f en fonction de "z seulement".

0*P N 0? P
Ox? 0y?

=0

. On ne peut pas construire une fonction analytique si la partie imaginaire et la partie réelle

(donc ici P et @) ne sont pas harmoniques!

aazl(x, y)=—e " (xszn(y) + ycos(y)) + e Tsin(y)
= e " (sin(y)(1 — ) — ycos(y))
0*P

T2 (@) = e (= sin(y)(1 — ) + yeos(y)) — e “sin(y)

= = (sin(y)(z — 2) + yeos(y))
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85)21($7 y) = e *(cos(y)(z + 1) — ysin(y))

2
86;;1(33, y)=¢e " (sin(y)(—Q —z) — ycos(y))

On remarque que P n’est pas harmonique, la condition n’est donc pas vérifiée. La fonction
P n’est pas analytique. Pour y remédier, nous allons changer légérement cette fonction.
Apparemment il n’y a qu’un probléme de signe.

. On pose P(z,y) = e 7 (a:sin(y) —ycos(y)). Aprés avoir refait le calcul des dérivées partielles
de P, on obtient :

9*P

o (1) = 7 (sin(y) (= — 2)-yeos(y))

9P

8y21 (z,y) = e (sin(y)(+2 — z)+ycos(y))
oP  9Q . orP _ 0Q
dx 9y ¢ dy O

Nous allons maintenant intégrer une de ces deux équations pour déterminer ’expression
de Q. Mais attention, quand on intégre une dérivée, on obtient une fonction juste & UNE
constante prés; mais dans le cas des dérivées partielles, cette constante est une fonction
des autres variables (ici ce sera une fonction de z). Fainéant comme nous sommes, nous
choisissons la facilité, on intégre la premiére expression.

P(z,y) = e*‘”< — cos(y) + ysin(y) + cos(y) + xcos(y)) + constante

N’oublions pas que constante = g(z). Maintenant, on dérive pour déterminer g(z).

0Q

or=e” (COS(y) —ysin(y) — wCOS(y)) +4'(x)

Par identification avec —%—]; on obtient ¢'(z) =0=g(z) =K € R

. On cherche f de sorte qu’il ne s’exprime qu’avec z. Cette fonction est donc valable pour
tout z et donc en particulier avec z =z et y =0 .

f(z)=e"" (xsm(y) - ycos(y)) +i—x (xcos(y) + ysm(y)) +iK

f(z) =de " (x) +iK
f(z) =iz—z+iK
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Annexe B

Formule de Green-Riemann en
coordonnées cartésienens et polaires

Ce document annexe a été rédigé par Guy Cathebras. Vous pouvez retrouver ce document
sur I'Intranet. 11 s’agit de la formule de Green-Riemann déclinée en coordonnées cartésiennes et
polaires.

1. FORMULE DE STOKES-AMPERES

Soit & une courbe fermée de 1'espace. Soit S une surface, non fermée, s’appuyant sur & et
soit V(M ) un champ de vecteur.

On démontre et nous admettrons que la circulation de V(M ) le long de % est égale au flux
de son rotationnel & travers S. Ce qui s’écrit :

/Cvmmz//smm@

Dans cette expression, W = mds ol T(WS est le vecteur tangent unitaire & la courbe
€ au point M et ds est la différentielle de I’abscisse curviligne.

De son coté, dS est un vecteur normal & la surface S, dont la norme est égale a ’élément
d’aire et dont la direction est fixée par le sens de parcours de la courbe € (c’est ce que 'on
appelle la régle du tire-bouchon).

2. FORMULE DE GREEN-RIEMANN EN COORDONEES CARTESIENNES

-,

Considérons dans un espace rapporté a un repére orthonormé (0,7, 7, k) le cas ou € et S sont

entiérement contenues dans le plan (O,7,7) de méme que le vecteur V(M ). Posons :

Vw5=P@wﬁ+Q®wﬁ

D’otu l'on tire immédiatement que :
— *S 0Q 0P\ -
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Parce que 'on est en coordonnées cartésiennes, on a :
M = de 7+ dy T+ dz K
Parce que, de plus S est entiérement dans le plan (O,7,7), on a :
cﬁ =dx dy k

Dans ces conditions,

1% Mim = P(z,y)dz + Q(z,y)dy

rotV )(ﬁ <8Q—8P>d dy

Et la formule de Stokes devient la formule de Green-Riemann :
0Q OP
P d dy = — — — | dxd
A) (z,y)dz + Q(z,y)dy //S ((% ax> z dy

3. FORMULE DE GREEN-RIEMANN EN COORDONEES POLAIRES

Considérons maintenant le cas ot % et S sont définies en coordonées polaires, chaque point
de l'espace étant repéré en coordonnées cylindriques par un triplé (p, 0, z). De la méme fagon que

précédemment, posons :
V(M ) = 0)ur + V(p, 0)up

D’ou 'on tire immédiatement que :
(pV) oU
rot ﬁ p ( gp 3 9> k

Parce que 'on est en coordonnées cylindriques, on a :

m = dpuy + pdfug + dzk
Parce que, de plus, S est entiérement dans le plan (O, 1772, 275), ona:

(ﬁ = pdp db k

Dans ces conditions,

V(MJ.db = U(p,0)dp+ pV (p, 6)d6

rot V(M ) (ﬁ (p;/ — %g) pdp db

_[(0(pV) oU
_<&)—%>®M
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Et la formule de Stokes devient la formule de Green-Riemann en coordonnées polaires :

/Up, )dp + pV (p, 0 de_//< (V) _ >d 6

Nous pourrions nous arréter 1a. Posons cependant W (p, 0) = pV (pf). Nous voyons alors que :

/U(p,e)dp+Wp, de_// (aW 6U>d o

C’est-a-dire que la méme formule de Green-Riemann est applicable en coordonnées carté-
siennes et en coordonnées polaires !
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