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L’analyse complexe est un domaine des mathématiques traitant des fonctions à valeurs com-
plexes (ou, plus généralement, à valeurs dans un C-espace vectoriel) et qui sont dérivables par
rapport à une ou plusieurs variables complexes.
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Chapitre 1

Fonctions Complexes de Variables
Complexes

1.1 Rappels sur les nombres complexes

On écrit |z| la norme du nombre complexe z dans C . De fait, l’application

(z1, z2) ∈ C→ d(z1, z2) = |z1 − z2|

est une distance.

Un nombre complexe est à l’origine un couple de réels et on lui associe les opérations
élémentaires :

– l’addition : (x1, y1) + (x2, y2) =
(
x1 + x2 , y1 + y2

)
– la multiplication : (x1, y1)× (x2, y2) =

(
x1x2 − y1y2 , x1y2 + x2y1

)
exemple

(0, 1).(0, 1) = (−1, 0)

on nomme (0, 1) = i où i est un nombre imaginaire qui se caractérise par l’équation i2 = −1

Le couple complexe (a, b) se note (a, b) = a+ ib
Il existe une coîncidence entre R et l’ensemble des complexes de partie imaginaire nulle. En

clair un nombre complexe avec une partie imaginaire nulle (i.e. bi = 0) est considérée comme un
réel.

On appelle le conjugué d’un nombre complexe (a, b) le complexe : (a, b)∗ = a− ib
Le module d’un nombre complexe (a, b) se note :

|(a, b)|2 = a2 + b2 = (a, b)(a, b)∗ = (a+ ib)(a− ib)
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Correspondance entre C et le plan

Forme polaire

Pour alléger l’écriture, on a l’habitude de poser

ρ = |z| = OM =

√
Re2(z) + Im2(z)

θ = arg(z) solution de
{

Re(z) = |z|.cos(θ)
Im(z) = |z|.sin(θ)

a+ ib = ρ cos(θ) + iρ sin(θ)
= ρ

(
cos(θ) + i sin(θ)

)
= ρeiθ
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Formule de de Moivre 1

z = ρeiθ

zn = ρneinθ

zn = ρn
(

cos(θ) + i sin(θ)]big)n

zn = ρn
(

cos(nθ) + i sin(nθ)]big)

Équations algébriques dans C

lclzn − a = 0

zn = a

zn = ρneinθ = ρaeinθ

⇔ ρn = ρa dans R
nθ = θa + 2kπ dans R (avec k ∈ Z)

⇔ ρ =
√
nρa et θ =

θ

n
+
k

n
2π

1.2 Définitions des principales notions en Analyse

Définition : z est au delta-voisinage de z0 si {z ∈ C tel que |z − z0| < δ} . On appelle le
delta-voisinage pointé de z0 la condition suivante {z ∈ C tel que 0 < |z − z0| < δ}

Définition : on dit que z0 est un point limite (aussi appelé point d’accumulation) d’un
ensemble S ⊂ C si tout δ voisinage de z0 contient des points de S.

∀δ ∈ R∗+ ,∃z ∈ S tel que |z − z0| < δ et avec z 6= z0

Définition : Un ensemble de points est dit fermé si et seulement si tous les points d’accu-
mulation de S est un point de S.
exemple : S = {z ∈ C tel que |z| ≤ 1}

Définition : Un ensemble borné se caractérise par :

∃M ∈ R+ tel que ∀z ∈ S|z| < M

1. Abraham de Moivre (né le 26 mai 1667 à Vitry-le-François - mort le 27 novembre 1754 à Londres) est
un mathématicien français. De Moivre était un précurseur du développement de la géométrie analytique et de
la théorie des probabilités. C’est en 1707 qu’il trouva cette formidable formule que l’on retrouve aujourd’hui en
Géométrie et en Analyse.
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Définition : Un ensemble S est compact si et seulement s’il est fermé et borné.

Définition : On dit que z0 est intérieur à S si et seulement s’il existe un δ-voisinage de
z0 dont tous les points appartient à S.

∃δ ∈ R∗+ tel que ∀z ∈ C |z − z0| < δ ⇒ z ∈ S

Définition : On dit que z0 est extérieur à S si et seulement s’il existe un δ-voisinage de
z0 dont aucun des points n’appartient à S.

∃δ ∈ R∗+ tel que ∀z ∈ C |z − z0| < δ ⇒ z /∈ S

Définition : On dit qu’un point est un point frontière si tout δ-voisinage de z0 contient à
la fois des points de S et des points n’appartenant pas à S.

∀δ ∈ R∗+ ∃z1 ∈ S et z2 /∈ S tel que |z1 − z0| < δ et |z2 − z0| < δ

Définition : Un ensemble S est ouvert si et seulement si il ne possède que des points in-
térieurs.

Définition : Un ensemble est dit connexe si et seulement si on peut relier deux points
quelconques de cet ensemble par un chemin polygonal entièrement contenu dans cet ensemble.

Figure 1.1: L’ensemble de gauche est connexe, celui de droite n’est pas connexe, car pour
joindre le point A au point B, il faut sortir de l’ensemble.

Théorème de Bolzano Weirstrass
Tout ensemble infini et borné possède au moins un point d’accumulation.

2

2. Bernard Placidus Johann Nepomuk Bolzano (5 octobre 1781 – 18 décembre 1848) est un mathématicien,
logicien, philosophe, théologien bohémien de langue et de culture allemandes, fils d’un Italien émigré à Prague.
Karl Theodor Wilhelm Weierstrass, habituellement appelé Karl Weierstrass, né le 31 octobre 1815 à Ostenfelde
(Westphalie), mort le 19 février 1897 à Berlin, était un mathématicien allemand, lauréat de la médaille Copley
en 1895.
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1.3 Définitions pour l’Analyse Complexe

On définit la fonction f : C→ C et z 7→ w = f(z).
Définition : Si w est unique, on dit que la fonction f est uniforme. Si w est multiple on dit
alors que la fonction est multiforme.

exmeple :

w = z2 → ici nous retrouvons une fonction uniforme .

w = z
1
2 ⇔ w est solution de w2 = z → la fonction est multiforme, il y a 2 solutions .

w =

{ √
|z|ei arg(z)/2√
|z|ei(

arg(z)
2

+π)

Une fonction de C dans C définit également une transformation. Prenons comme exemple la
fonction w = z2. En posant z = x+iy et w = u+iv, nous obtenons par identification u = x2−y2

et v = 2xy. Sur le dessin ci-dessous, nous pourrons voir la transformation de cette fonction du
plan z dans le plan w.

Définition : On dit que f admet une limite L en z0 si et seulement si :

∀ε ∈ R∗+, ∃ρ ∈ R∗+ tel que |z − z0| < ρ⇒ |f(z)− L| < ε

Nous allons maintenant aborder une notion importante de ce cours d’analyse : l’identification
d’une fonction analytique 3. On dit qu’une fonction est analytique si la notion de dérivée par
rapport à z à un sens pour cette fonction. On a alors :

f ′(z0) = lim
z→z0

f(z0)− f(z)

z0 − z

3. De nombreux mathématiciens se sont intéressé à ces fonctions. Parmi eux, nous pouvons citer de Moivre,
Stirling, Euler, Gauss, Laplace, Poisson.
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Les fonctions analytiques

Unmalheur n’arrivant jamais seul, la fonction analytique doit également remplir les conditions
de Cauchy-Riemann 4.

Posons donc z = x + iy, et P et Q sont deux fonctions de R dans R. f(z) est analytique si
et seulement si :

f(z) = P (x, y) + iQ(x, y)

∂P

∂x
=
∂Q

∂y
et

∂P

∂y
=
∂Q

∂x

***********************************************

Démonstration : Les conditions de Cauchy-Riemann

Les conditions de Cauchy-Riemann sont nécessaires pour qu’une fonction complexe soir dérivable.

f ′(z) = lim
z→z0

f(z0)− f(z)

z0 − z
⇔ ∀ε ∈ R∗+,∃ρ ∈ R∗+ tel que |z−z0| < ε⇒

∣∣∣f(z0)− f(z)

z0 − z
−f ′(z0)

∣∣∣ < ρ

f(z) = P (x, y) + iQ(x, y)

avec z = x+ iy et z0 = x0 + iy0

1. Écrire f ′(z0) en fonction de P,Q, x, y, x0, y0

2. Déterminer cette limite de deux façons différentes :
– z = x+ iy0

– z = x0 + iy

3. Montrer que les conditions de Cauchy-Riemann sont nécessaires pour que ces limites soient
identiques

4. Augustin Louis, baron Cauchy, né à Paris le 21 août 1789 et mort à Sceaux (Hauts-de-Seine) le 23 mai 1857,
est un mathématicien français. Georg Friedrich Bernhard Riemann, né le 17 septembre 1826 à Breselenz, mort
le 20 juillet 1866 à Selasca, Italie, est un mathématicien allemand. Sous l’influence de Laplace, Cauchy présente
dans le mémoire Sur les intégrales définies (1814) la première écriture des équations de Cauchy-Riemann comme
condition d’analyticité pour une fonction d’une variable complexe.

9



1) On utilise l’expression de la limite dans laquelle on remplace f(z) par son expression
polynomiale.

f ′(z0) = lim
z→z0

P (x0, y0)− P (x, y) + i
(
Q(x0, y0)−Q(x, y)

)
x0 − x+ i(y0 − y)

2) 1er cas : z = x+ iy0

f ′(z0) = lim
x→x0

P (x0, y0)− P (x, y0)

x0 − x
+ i lim

x→x0

Q(x0, y0)−Q(x, y0)

x0 − x

f ′(z0) =
∂P

∂x
(x0, y0) + i

∂Q

∂x
(x0, y0)

2eme cas : z = x0 + iy

f ′(z0) = −i lim
y→y0

P (x0, y0)− P (x0, y)

y0 − y
+ lim
y→y0

Q(x0, y0)−Q(x0, y)

y0 − y

f ′(z0) = −i ∂P

∂y
(x0, y0) +

∂Q

∂y
(x0, y0)

3) La condition nécessaire pour que la limite de f ′(z0) existe (et donc que la fonction f soit
dérivable) est l’égalité des 2 expressions trouvées au-dessus :

∂P

∂x
=
∂Q

∂y

∂P

∂y
= −∂Q

∂x

***********************************************

Définition : Si la dérivée f ′(z) existe en tout point z d’un ensemble ouvert R alors f est
dite analytique dans R.
f sera dite analytique au point z0 si et seulement si il existe un voisinage de z0 en tout point
duquel f ′(z) existe.
Les conditions de Cauchy-Riemann sont des conditions nécessaires, mais non suffisante à l’exis-
tence de f ′(z). Cependant, si les dérivées partielles de P et Q sont continues sur l’ouvert R
alors, les conditions de Cauchy-Riemann sont suffisantes.
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Si f est analytique, P et Q satisfont les conditions de Cauchy-Riemann, on trouve alors les
équations suivantes :

∂2P

∂2x
=

∂2Q

∂y∂x
et

∂2P

∂2y
= − ∂2Q

∂x∂y
d’où

∂2P

∂2x
+
∂2P

∂2y
= 0

∂2Q

∂2x
=

∂2P

∂y∂x
et

∂2Q

∂2y
= − ∂2P

∂x∂y
d’où

∂2Q

∂2x
+
∂2Q

∂2y
= 0

P et Q sont des fonctions harmoniques conjuguées. 5

Les fonctions harmoniques conjuguées ont une propriété particulière, elles forment dans un
plan, un réseau de courbes. On a donc :

P (x, y) = α ∈ R
Q(x, y) = β ∈ R

P (x, y) et Q(x, y) définissent deux réseaux de courbes. La particularité est que ces deux réseaux
se coupent perpendiculairement dans la plan.

Figure 1.2: Exemple d’un réseau de courbes pour f(z) = 1/z et avec P = α et Q = β

Si f est analytique, f(z) est le résultat d’un calcul sur z et non pas d’un calcul qui passerait
forcément par Re(z), Im(z), |z|, ou z. Les règles de dérivation d’une fonction analytique sont les
mêmes que dans R, à savoir l’addition (u + v)′ = u′ + v′ , la multiplication (uv)′ = u′v + uv′ ,
etc.

5. Vous remarquerez la similitude avec les équations de Laplace.
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Quelques fonctions analytiques élémentaires

Polynômes f(z) = anz
n + an−1z

n−1 + ...+ a1z + a0

Rationelles f(z) = u(z)
v(z)

avec u(z) et v(z) deux fonctions polynomiales de z C’est une fonction analytique sur C
privé de { racines de v(z)} . Les racines de v(z) sont appelées les pôles de la fonction f .

Exponentielle Complexe On sait que pour y ∈ R eiy = cos(y) + i sin(y).

Les formules d’Euler nous donnent :

cos(y) =
eiy + e−iy

2
et sin(y) =

eiy − e−iy

2i

ez = ex+iy = exeiy

ez = ex
(

cos(y) + i sin(y)
)

ez = eRe(z)
(

cos(Im(z)) + i sin(Im(z))
)

ez+ik2π = ezeik2π = ez

donc ez est périodique de période T = 2kπ avec k ∈ K

Par extension nous pouvons en déduire les formes exponentielles suivantes :

sin(z) =
eiz − e−iz

2i
cos(z) =

eiz + e−iz

2

sh(z) =
ez − e−z

2
ch(z) =

ez + e−z

2

Réciproque de l’exponentielle on s’en sert généralement pour résoudre des équations

ez = A avec A ∈ C
z = x+ iy avec A = ρiθ

ez = exeiy = ρeiθ = ex
(

cos(y) + i sin(y)
)

= ρ(cos(θ) + i sin(θ))

⇔
{
x = ln(ρ)
y = θ + 2kπ

Par définition, Log(z) est la réciproque de la fonction ez. Attention cependant à ne pas le
confondre avec la fonction log(z) qui est la fonction logarithmique de base 10. Ici Log(z) re-
présente la fonction réciproque, on la trouve ainsi :

Log(z) = ln(|z|) + i(arg(z) + 2kπ)

˜
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1.4 Rappels sur les fonctions trigonométriques circulaires et hy-
perboliques

sin(z) =
eiz − e−iz

2i
cos(z) =

eiz + e−iz

2

sh(z) =
ez − e−z

2
ch(z) =

ez + e−z

2

cos(iz) =
ez + e−z

2
= ch(z)

sin(iz) =
e−z − ez

2i
=
i(e−z − ez)

2i2
= ish(z)

{
cos(iz) = ch(z)
sin(iz) = ish(z)

et
{

ch(iz) = cos(z)
sh(iz) = i sin(z)

Figures trigonométriques d’un complexe en partie réelle et imaginaire

Prenons le complexe z = x + iy avec (x, y) deux réels. Nous pouvons exprimer les fonctions
trigonométriques cos et sin ainsi :

sin(z) = sin(x+ iy) = sin(x) cos(iy) + cos(x) sin(iy)

sin(z) = sin(x)ch(y) + i cos(x)sh(y)

De même pour le cosinus, on obtient :

cos(z) = cos(x)ch(y)− i sin(x)sh(y)

Rappels

sin(a+ b) = sin(a) cos(b) + sin(b) cos(a)

sin(a− b) = sin(a) cos(b)− sin(b) cos(a)

cos(a+ b) = cos(a) cos(b)− sin(a) sin(b)

cos(a− b) = cos(a) cos(b) + sin(a) sin(b)

« L’erreur est humaine, seule la perséverrance est diabolique ; l’idéal étant de ne pas persé-
verrer dans l’erreur. » Guy Cathebras

˜
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Fonctions trigonométriques inverses

arcsin(z) : c’est la fonction qui donne toutes les solutions en Z de l’équation sin(Z) = z.
En conséquence, arcsin est multiforme.

arccos(z), arctan(z), argsh(z), argch(z), argth(z) : toutes ces fonctions sont multiformes ! Comme
les fonctions trigonométriques sont des combinaisons linéaires de fonctions exponentielles,
on en déduit que les fonctions trigonométriques inverses sont des combinaisons linéaires de
la fonction Log (souvenez-vous, la fameuse fonction qui n’est ni le logarithme népérien, ni
le logarithme de base 10 !).

arcsin(z) =
1

i
Log

(
iz +

√
1− z2

)
arccos(z) =

1

i
Log

(
z +

√
z2 − 1

)
arctan(z) =

1

2i
Log

(1 + iz

1− iz

)
argsh(z) = Log

(
z +

√
1 + z2

)
argch(z) = Log

(
z +

√
z2 − 1

)
argtan(z) =

1

2
Log

(1 + z

1− z

)

1.5 Notion de Singularité

En mathématiques, une singularité est en général un point, une valeur ou un cas dans lequel
un certain objet mathématique n’est pas bien défini. C’est-à-dire qu’une singularité est un point
où f(z) n’est pas analytique. On appelle ces points des points singuliers. Considérons la
fonction suivante :

f(z) = z1/2

14



˜

points de branchement et coupures : le point de branchement est le point commun
à toutes les coupures d’une fonction. Ce n’est pas une singularité isolée, la fonction est
multiforme, son extrémité est une coupure. Ici le point de branchement est l’origine

zA = ρeiθ1 → f(zA) = z
1/2
A =

√
ρeiθ1/2

zA′ = ρei(θ1+2π) → f(zA′) = (zA′)1/2 =
√
ρei(

θ1
2

+π

points singuliers isolés : z = z0 est un point singulier isolé si et seulement si il existe un
voisinage de z0 ne contenant aucun autre point singulier. Dans l’exemple ci-dessus, tous
les points de coupure sont des points singuliers isolés.

pôles : on dit que z0 est un pôle d’ordre n si et seulement si il existe un n ∈ N tel que
lim
z→z0

(
z − z0

)n
f(z) = A 6= 0 6=∞. Un pôle est une singularité isolée.

singularité supprimable lim
z→z0

(
z − z0

)n
f(z) = A 6= ∞. C’est une limite finie, la fonction

est prolongeable par continuité en z0.

singularité essentielle les points singuliers essentiels sont tous les autres point. La limite
de f(z) n’existe pas.
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Chapitre 2

Intégration dans le domaine complexe

2.1 Intégrale curviligne

f(z) est une fonction analytique sur l’ouvert R. La courbe C est inclue dans R, mais at-
tention, ce n’est pas la représentation de la fonction f ! f(z) est continue en tout point de C .

Les points z1 à zn appartiennent à la courbe C . L’ensemble des ωk sont également sur la
courbe, et se trouvent sur l’intervalle [zk−1, zk[.

On a alors la somme suivante :

Sn =
n∑
k=1

(zk − zk−1)f(ωk)

On nomme l’intégrale curviligne de f(z) le long de la courbe C la limite suivante :

lim
n
Sn =

∫
C
f(z)dz

Essayons maintenant de simplifier l’expression de cette intégrale à l’aide du module et de
l’inégalité triangulaire 1.

1. petit rappel de l’inégalité triangulaire : |x+ y| ≤ |x|+ |y|
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|Sn| ≤
n∑
k=1

|zk − zk−1| × |f(ωk)|

≤
n∑
k=1

|zk − zk−1| × sup
k∈C
|f(z)|

∣∣∣ ∫
C
f(z)dz

∣∣∣ ≤ L(C )× sup
z∈C
|f(z)|

Remarque :
n∑
k=1

|zk − zk−1| tend vers la longueur de la courbe que l’on note ici L(C ).

2.2 Intégrale curviligne réelle

Soient P et Q, deux fonctions de R2 dans R.

∫
C
P (x, y)dx+Q(x, y)dy

On ne dira jamais assez que l’intégrale ne dépend pas du chemin parcouru, mais seulement de
ses extrémités. L’intégrale précédente n’est vraie que si cette quantité est une différentielle totale
exacte.

Calcul

Si C est continuement différentiable, et si C est définie par :

C =
{

(x, y) ∈ R2 tel que x = u(t); y = v(t) | t1 ≤ t ≤ t2
}

dx = u′(t)dt

dy = v′(t)dt

17



I =

t2∫
t1

(
P
(
u(t), v(t)

)
u′(t) +Q

(
u(t), v(t)

)
v′(t)

)
dt

Maintenant, nous alloins déterminer quelle est la relation entre l’intégrle curviligne réelle et
complexe. Soit la fonction f suivante :

f : C→ C
z = x+ iy 7→ f(z) = P (x, y) + iQ(x, y)

Soit γ une courbe continue dans C. Soit I =
∫
γ f(z)dz . Posons dz = dx+ idy.

Attention : la relation entre dx et dy est imposée par γ.
Exemple :

γ =
{
z = x+ iy ∈ C|W (x, y) = α

}
∂W

∂x
dx+

∂W

∂y
dy = 0

I =

∫
γ

(
P (x, y) + iQ(x, y)

)(
dx+ idy

)
I =

∫
γ
P (x, y)dx−Q(x, y)dy + i

∫
γ
Q(x, y)dx+ P (x, y)dy

Une intégrale curviligne complexe est donc composée :
– d’une partie réelle donnant lieu à une intégrale curviligne réelle
– d’une partie imaginaire donnant lieu à une intégrale curviligne réelle

2.3 Propriétés des intégrales dans C

2.3.1 Linéarité

∀(λ, µ) ∈ C2

∫
γ

(
λf(z) + µg(z)

)
dz = λ

∫
γ
f(z)dz + µ

∫
γ
g(z)dz

2.3.2 Sens de parcours et relation de Chasles 2

∫
ÂB

f(z)dz = −
∫
B̂A

f(z)dz∫
ÂB

f(z)dz =

∫
ÂC

f(z)dz +

∫
ĈB

f(z)dz∣∣∣ ∫
γ
f(z)dz

∣∣∣ ≤ sup
z∈γ
|f(z)| × L(γ)

Il faut retenir les méthodes de majoration des modules de l’intégrale, nous en ferons une
consommation immodérée.

2. Michel Chasles (15 novembre 1793 - 18 décembre 1880) était un mathématicien français. On lui doit d’im-
portant travaux en géométrie projective. Il reçut la prestigieuse médaille Copley en 1865.
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2.3.3 Cas particulier d’un lacet fermé

On l’appelera "contour", c’est une boucle.

2.3.4 Formule de Green-Riemann 3

Soit un domaine D de R2 délimité par un contour Γ. Soient deux fonctions de R2 dans R que
l’on nommera P (x, y) et Q(x, y).
L’objectif est de calculer l’intégrale suivante :

I =
∫∫
S
∂Q
∂x dxdy

I =

d∫
c

(∫ x2(t)

x1(t)

∂Q

∂x
dx
)
dy

x2(y)∫
x1(y)

∂Q

∂x
=
[
Q(x, y)]

x2(t)
x1(t) = Q

(
x2(y), y

)
−Q

(
x1(y), y

)
3. George Green (juillet 1793 - mai 1841) était un physicien britannique. Il est l’auteur de Essai sur l’application

de l’analyse mathématique aux théories de l’électricité et du magnétisme en 1828. George Green n’a passé qu’une
seule année à l’école dans son enfance. Il apprit les mathémtiques seul dans le moulin de son père dont il avait
hérité en 1829. Il intégra l’Université de Cambridge en tant qu’étudiant en 1833 à l’âge de 40 ans, il en sort
diplômé 4 ans plus tard.
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Γ1 et Γ2 représentent respectivement les courbes x1(t) et x2(t).

I =

d∫
c

(
Q
(
x2(y, )y

)
−Q

(
x1(y), y

))
dy =

d∫
c

Q
(
x2(y), y

)
dy −

d∫
c

Q
(
x1(y), y

)
dy

I =

∫
Γ2

Q(x, y)dy −
∫

Γ1

Q(x, y)dy

I =

∫
Γ2

Q(x, y)dy +

∫
−Γ1

Q(x, y)dy

D’où finalement : ∫∫
D

∂Q

∂x
dxdy =

∫
Γ
Q(x, y)dy∫∫

D

∂P

∂y
dxdy = −

∫
Γ
P (x, y)dx

La formule de Green-Riemann se retrouve en soustrayant les deux équations précédentes :∫∫
D

(∂Q
∂x
− ∂P

∂y

)
dxdy =

∫
Γ
P (x, y)dx+Q(x, y)dy

*****************************************************

Applications

Calcul d’une aire plane
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P (x, y) = −y ⇒ ∂P

∂y
= −1

Q(x, y) = x⇒ ∂Q

∂x
= 1

∫
Γ
xdy − ydx =

∫∫
D

(1− (−1))dxdy = 2

∫∫
D
dxdy

Aire de D = 1
2

∫
Γ xdy − ydx

Coordonnées polaires

x = ρ cos(θ)⇒ dx = cos(θ)dρ− ρ sin(θ)dθ

y = ρ sin(θ)⇒ dy = sin(θ)dρ+ ρ cos(θ)dθ

Aire du domaine :

D =
1

2

∫
Γ

(
ρ cos(θ) sin(θ)dρ+ ρ2 cos(θ)2dθ − ρ cos(θ) sin(θ)dρ+ ρ2 sin(θ)2dθ

)
A (D) =

1

2

∫
Γ
ρ2dθ

Exemple d’application : l’aire d’un disque

On donne Γ un cercle de centre O l’origine, et de rayon R. En coordonnées polaires, nous
avons ρ et θ variant de 0 à 2π.

A (D) =
1

2

2π∫
0

R2dθ =
R2

2
[2π]2π0 = πr2

*****************************************************

2.3.5 Calcul de longueur d’arc

Nous avons un arc de A à B.

L(Γ) =

∫
Γ
dS =

∫
Γ

√
dx2 + dy2
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3 cas de calculs différents pour la longueur d’arc :

Cas n◦1
γ est défini comm la courbe représentative d’une fonction f : R→ R.

γ =
{

(x, y) ∈ R2|y = f(x)
}

dy = f ′(x)dx⇒ dx2 + dy2 = (1 + f ′(x)2)dx

L(γ) =

∫ xB

xA

√
1 + f ′(x)2dx

Cas n◦2 Coordonnées paramétriques

γ =
{

(x, y) ∈ R2|x = x(t) ; y = y(t) t ∈ [ta; tb]
}

⇒ dx = x′(t)dt ⇒ ds =
√
x′(t)2 + y′(t)2dt

dy = y′(t)dt

L(γ) =

∫ tb

ta

√
x′(t)2 + y′(t)2dt

Cas n◦3
γ =

{
(x, y) ∈ R2|x = ρ(θ) cos(θ) ; y = ρ(θ) sin(θ) θ ∈ [θa; θb]

}
(
ρ(θ) cos(θ)

)′
= ρ(θ) cos(θ)− ρ(θ) sin(θ) (2.1)(

ρ(θ) sin(θ)
)′

= ρ(θ) sin(θ) + ρ(θ) cos(θ) (2.2)

(1.1)2 = ρ′(θ)2 cos(θ)2 + ρ(θ)2 sin(θ)2 − 2ρ(θ)ρ′(θ) sin(θ) cos(θ)

(1.2)2 = ρ′(θ)2 sin(θ)2 + ρ(θ)2 cos(θ)2 + 2ρ(θ)ρ′(θ) sin(θ) cos(θ)
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(1.1)2 + (1.2)2 = ρ′(θ)2 + ρ(θ)

L(γ) =

∫ θb

θa

√
ρ′(θ)2 + ρ(θ)dθ

2.3.6 Problème fondamental

Nous allons chercher à calculer l’intégrale d’une fonction zn sur un contour fermé quelconque
entourant une fois l’origine.

∫
Γ
zndz

On pose z = ρeiθ ⇒ zn = ρneinθ

dz = eiθdρ+ iρeiθdθ

I =

∫
Γ
ρneinθ

(
eiθdρ+ iρeiθdθ

)
=

∫
Γ
ρnei(n+1)θdρ+ iρn+1ei(n+1)θdθ

Cas général n 6= −1

I =

∫
Γ
ρnei(n+1)θdρ+ iρn+1ei(n+1)θdθ

La formule de Green-Riemann pour l’intervalle curviligne marche aussi bien en coordonnées
polaires que cartésiennes (cf Annexe B).
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I =

∫
Γ
P (ρ, θ)dρ+Q(ρ, θ)dθ

I =

∫∫
∆

(∂Q
∂ρ
− ∂P

∂θ

)
dρdθ

Q(ρ, θ) = iρn+1ei(n+1)θ ∂Q
∂ρ = i(n+ 1)ρnei(n+1)θ

P (ρ, θ) = ρnei(n+1)θ ∂P
∂θ = i(n+ 1)ρnei(n+1)θ

En conclusion, nous obtenons ∀n 6= −1, I = 0.

Cas particulier n = −1

On trouve donc I =
∫

Γ
dρ
ρ + idθ

Nous considérons maintenant la fonction Γ1 = {z ∈ Ctelquez = ρ(θ)eiθ avec ρ : R → R∗+
continue et 2π−priodique. Le long de Γ1, on peut alors écrire dz =

(
ρ′(θ)eiθ + iρ(θ)eiθ

)
dθ. Pour

faire le tour de l’origine, il faut faire varier θ de 0 à 2π.

I =

∫
Γ1

dz

z
=

2π∫
0

ρ′(θ)eiθ + iρ(θ)eiθ

ρ(θ)eiθ
dθ

I =

2π∫
0

(ρ′(θ)
ρ(θ)

+ i
)
dθ

I =
[

ln |ρ(θ)|+ iθ
]2π

0
=

∫
Γ1

dz

z
= i2π

I =

∫
Γ1

dz

z
= i2π

Remarque : Nous pouvons généraliser cette formule avec I = i2kπ, avec k le nombre de
tours autour de l’origine. Par exemple, si k = 3, la fonction effectue 3 tours, nous trouvons donc
I = i6π. Et si la fonction fait un tour en sens inverse, on a alors k = −1, d’où I = −i2π.

2.4 Théorème de Cauchy

f est une fonction analytique dans un ouvert simplement connexe contenant entièrement un
contour Γ avec Γ qui délimite un domaine D.
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Figure 2.1: Le cas a) est simplement connexe. Le cas b) est multiplement connexe, car on ne
peut pas passer d’un chemin à un autre sans sortir de l’ouvert

Mais qu’est-ce qu’un ouvert simplement connexe ? Ci-dessous se trouve une explication rapide.

« Dans un ouvert multiplement connexe, il y a des trous. » définition terre à terre de Guy
Cathebras.

Figure 2.2:
∫

Γ f(z)dz

Posons z = x+ iy et f(z) = P (x, y) + iQ(x, y)
dz = dx+ idy∫

Γ
f(z)dz =

∫
Γ
P (x, y)dx−Q(x, y)dy + i

∫
Γ
P (x, y)dy +Q(x, y)dx

=

∫∫
D

(∂P
∂x
− ∂Q

∂y

)
dxdy + i

∫∫
D

(∂P
∂y

+
∂Q

∂x

)
dxdy

Si f(z) est analytique sur D, nous retrouvons à l’aide des conditions de Caychy-Riemann les
expressions suivantes :

∂P

∂x
=
∂Q

∂y

∂P

∂y
= −∂Q

∂x
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L’intégrale sur un contour fermé Γ d’une fonction analytique sur Γ et à l’intérieur de Γ est
nulle : ∫

Γ
f(z)dz = 0

Conséquence :

Figure 2.3: D est le domaine qui délimite où la fonction est analytique. En dehors des zones
orange, la fonction f est analytique.

∫
C1+C2

f(z)dz = 0 =

∫
C1

f(z)dz +

∫
C2

f(z)dz∫
C1

f(z)dz = −
∫
C2

f(z)dz =

∫
−C2

f(z)dz

Il faudra faire attention au sens de parcours.

Figure 2.4: f(z) est analytique sur C1, C2, . . . Cn et analytique en tout point de D.

∫
C
f(z)dz =

n∑
i=1

∫
Ci

f(z)dz
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Chapitre 3

Formules Intégrales de Cauchy

Soit f : C→ C une fonction analytique sur et à l’intérieur d’un contour Γ.

I(a) =

∫
Γ

f(z)

z − a
dz

Posons alors la fonction
g(z) =

f(z)

z − a
g est une fonction analytique sur le domaine délimité par Γ privé de 0. Nous pouvons remarquer
que g(z) présente en a un pôle simple.

Soit β un cercle de centre a et de rayon δ.

∫
Γ
g(z) dz =

∫
β
g(z) dz = I(a)

I(a) =

∫
β

f(z)

z − a
dz =

∫
β

f(z)− f(a) + f(a)

z − a
dz

I(a) =

∫
β

f(z)− f(a)

z − a
dz +

∫
β

f(z)

z − a
dz

∫
β

f(a)

z − a
dz = f(a)

∫
β

dz

z − a
= f(a)

∫
β

dw

w
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w = z − a ⇒ dw = dz∫
β

f(a)

z − a
dz = i2πf(a)

∫
β

f(z)− f(a)

z − a
dz

On rappelle que β est le cercle de centre a et de rayon δ.∣∣∣∣∫
β

f(z)− f(a)

z − a
dz

∣∣∣∣ ≤ sup
z∈β

∣∣∣∣f(z)− f(a)

z − a

∣∣∣∣× L(β)

L(β) représente la longueur du cercle β, autrement dit la circonférence du cercle :

L(β) = 2πRβ = 2πδ

de plus, on sait que |z − a| = δ∣∣∣∣∫
β

f(z)− f(a)

z − a
dz

∣∣∣∣ ≤ sup
z∈β
|f(z)− f(a)| × 2πδ

δ
= 2π sup

z∈β
|f(z)− f(a)|

En faisant tendre δ vers 0, on obtient :∣∣∣∣∫
β

f(z)− f(a)

z − a
dz

∣∣∣∣ ≤ 0

⇒
∫
β

f(z)− f(a)

z − a
dz = 0

Finalement, on obtient la formule suivante :∫
Γ

f(z)

z − a
dz = i2πf(a)

3.1 Généralités

3.1.1 Dérivée de l’intégrale de Cauchy

f ′(a) = lim
b→a

f(a)− f(b)

a− b

a et b appartenant au domaine délimité par Γ, on a :

f ′(a) = lim
b→a

1
2iπ

∫
Γ
f(z)
z−a dz − 1

2iπ

∫
Γ
f(z)
z−b dz

a− b

f ′(a) =
1

2iπ
lim
b→a

∫
Γ

f(z)

a− b

(
1

z − a
− 1

z − b

)
dz
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Or 1
z−a −

1
z−b = z−b−z+a

(z−a)(z−b) = a−b
(z−a)(z−b)

f ′(a) =
1

2iπ
lim
b→a

∫
Γ

f(z)

(z − a)(z − b)
dz

On peut faire tendre b vers a sans aucuns problèmes, on peut même remplacer b par a. Ce qui
nous revient au final :

f ′(a) =
1

2iπ

∫
Γ

f(z)

(z − a)2
dz

3.1.2 dérivée seconde et n-ième de l’intégrale de Cauchy

f ′′(a) = lim
b→a

f ′(b)− f ′(a)

b− a

f ′′(a) =
1

2iπ
lim
b→a

∫
Γ

f(z)

a− b

(
1

(z − a)2
− 1

(z − b)2

)
dz

Or, nous savons que 1
(z−a)2

− 1
(z−b)2 = (a−b)(2z−(a+b))

(z−a)2(z−b)2
d’où finalement, l’expression de la dérivée seconde :

f ′′(a) =
1

2iπ
lim
b→a

∫
Γ

(2z − (a+ b))f(z)

(z − a)2(z − b)2
dz

f ′′(a) =
1

2iπ

∫
Γ

2(z − a)f(z)

(z − a)4
dz

f ′′(a) =
2

2iπ

∫
Γ

f(z)

(z − a)3
dz

Pour généraliser, nous allons chercher à déterminer quelle est la forme de la dérivée n-ième
de la fonction f .

E = lim
b→a

1

a− b

(
1

(z − a)n
− 1

(z − b)n

)
= lim

b→a

1

a− b

(
(z − b)n − (z − a)n

(z − a)n(z − b)

)
Rappelons maintenant de cette équation :

Xn − Y n = (X − Y )
n∑
k=1

Xn−kY k−1

E = lim
b→a

1

a− b

(a− b)
n∑
k=1

(z − b)n−k(z − a)k−1

(z − a)n(z − b)n

E =

n∑
k=1

(z − a)n−k(z − a)k−1

(z − a)2n
=
n(z − a)n−1

(z − a)2n
=

n

(z − a)n+1
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D’où finalement :

f (3)(a) =
2

2iπ

∫
Γ

3f(z)

(z − a)4
dz

f (4)(a) =
2× 3

2iπ

∫
Γ

4f(z)

(z − a)5
dz

Nous pouvons donc maintenant généraliser et nous obtenons la magnifique formule suivante
pour la dérivée n-ième de f :

f (n)(a) =
n!

2iπ

∫
Γ

f(z)

(z − a)n+1
dz

3.2 Conséquences

3.2.1 Les inégalités de Cauchy

Considérons une fonction analytique sur et à l’intérieur du cercle C = {z ∈ C tq |z−a| = r}

∣∣∣f (n)(a)
∣∣∣ =

n!

2π

∣∣∣∣∫
C

f(z)

(z − a)n+1
dz

∣∣∣∣∣∣∣f (n)(a)
∣∣∣ =

n!

2π
× 2πr sup

z∈C

∣∣∣∣ f(z)

rn+1

∣∣∣∣

∣∣∣f (n)(a)
∣∣∣ =

n!

rn
sup
z∈C
|f(z)|

3.2.2 Théorème de Liouville

Liouville 1 :

Toute fonction entière et bornée est constante

Considérons un point a le centre d’un cercle C et de rayon r.∣∣f ′(a)
∣∣ ≤ 1

r
sup
z∈C
|f(z)| ≤ M

r

Il existe M ∈ R tel que pour tout z nous ayions |f(z)| ≤M .
Comme r peut être rendu aussi grand que l’on souhaite, on trouve : f ′(a) = 0 ∀a ∈ C

1. Joseph Liouville (né en 1809 et décédé en 1882) était un mathématicien français. Liouville fonda en 1836 le
Journal de mathématiques pures et appliquées qui demeure aujourd’hui une référence dans ce domaine. Il publia
des textes dans de nombreux domaines des mathématiques, en géométrie différentielle, en topologie différentielle,
mais surtout en analyse complexe.
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3.2.3 Théorème de Gauss sur la valeur moyenne

Soit C un cercle de centre a et de rayon r. f est une fonction analytique sur et à l’intérieur
du cercle C . Nous avons donc :

f(a) =
1

2iπ

∫
C

f(z)

z − a
dz

On pose (z − a) = reiθ ⇒ z = a+ reiθ

dz = rieiθ dθ
On parcourt C en faisant varier θ de 0 à 2π.

f(a) =
1

2iπ

θ=2π∫
θ=0

f(a+ reiθ

reiθ

(
ireiθ

)
dθ

Nous venons de passer d’une intégrale complexe à une intégrale réelle contenant des nombres
complexes... je sais c’est subtil.

f(a) =
1

2π

2π∫
0

f(a+ reiθ dθ

f(a) est la moyenne des valeurs de f sur le cercle C .

3.3 Développement en série

Exercice Introductif

Rappel
Développement limité

1

1− z
= 1 + z2 + z3 + z4 · · ·

Faire le développement en série pour les trois domaines suivants de :

1

z − 1
− 1

z − 2
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Sur le 1er domaine D1

f(z) =
1

z − 1
− 1

z − 2
=

1

(−1)(1− z)
− (−1/2)

1− z
2

f(z) = −(1 + z + z2 + · · · ) +
1

2
(1 +

z

2
+
z2

4
+ · · · )

f(z) = −1− z − z2 − z3 − · · ·+ 1

2
+
z

4
+
z2

8
+
z3

10
+ · · ·

f(z) = −1

2
− 3z

4
− 7z2

8
− 15z3

16
− · · ·

Sur le 2me domaine D2

1 ≤ |z| ≤ 2 ⇒ 1

2
≤
∣∣∣z
2

∣∣∣ ≤ 1

f(z) =
1

z
× 1

1− 1/z
+

1

2
× 1

1− z/2

f(z) =
1

z

(
1 +

1

z
+

1

z2
+

1

z3
+ · · ·

)
+

1

2

(
1 +

1

z
+
z2

4
+
z3

8
+ · · ·

)
f(z) = · · ·+ 1

z4
+

1

z3
+

1

z2
+

1

z
+

1

2
+
z

4
+
z2

8
+
z3

16
+
z4

32
+ · · ·

C’est le développement en série de Laurent 2 ; il se caractérise par la présence de puissance
négative de z.

Sur le 3me domaine D3

f(z) =
1

z
× 1

1− 1/z
− 1

z
× 1

1− 2/z
=

1

z

(
1 +

1

z
+

1

z2
+

1

z3
+ · · ·

)
− 1

z

(
1 +

2

z
+

4

z2
+

8

z3
+ · · ·

)
f(z) = − 1

z2
− 3

z3
− 7

z4
− · · · − 2n − 1

zn+1
− · · ·

Nous retrouvons encore un développement en série de Laurent.

3.4 Suites et Séries de fonctions

Soit u1(z), u2(z), · · ·un(z) une suite de fonctions définies et uniformes dans une région D de
C. On dit que un(z) converge vers U(z) si et seulement si

∀ε ∈ R∗+ ∃N ∈ N tel que n > N ⇒ |un(z)− U(z)| < ε

U(z) est la limite de la suite (un(z))n∈N. En général, nous avons N dépendant de z.

2. Pierre Alphonse Laurent (1813 - 1854) est un mathématicien français connu pour la découverte des séries
de Laurent. Cette recherche était contenue dans un mémoire soumis au Grand prix de l’Académie des Sciences en
1843, mais sa candidature étant trop tardive, l’article n’a jamais été inscrit au prix.
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3.4.1 Le domaine de convergence

C’est l’ensemble des valeurs de z telles ue la suite converge.

3.4.2 Série de fonction

Sn(z) =
n∑
k=1

uk(z)

Une condition nécessaire, mais non suffisante, pour que Sn(z) converge vers S(z) est que
Uk(z) converge vers 0.

3.4.3 Séries entières

a0 + a1(z − z0) + a2(z − z0)2 + · · · =
∞∑
n=0

an(z − z0)n

De manière évidente, cette série converge vers a0 pour z = z0.
En général :

∃R ∈ R∗+ tel que |z − z0| < R ⇒ serie converge

|z − z0| > R ⇒ serie diverge

R est le rayon de convergence. On appelle disque de convergence le disque D suivant :

D = {z ∈ C tel que |z − z0| < R}

3.5 Théorèmes sur suites et séries

On pose ces théorèmes comme étant des axiomes, mais nous savons les démontrer 3.

1. la limite d’une suite est unique

2. une suite ou une série complexe est convergente si et seulement si la partie réelle et la
partie imaginaire convergent

3. la série entière :
– converge uniformément et absolument sur son disque de convergence 4

– peut être dérivée terme à terme sur son disque de convergence
– peut être intégrée terme à terme sur son disque de convergence
– est continue et uniforme sur son disque de convergence

3.6 Développement en série de Taylor

• soit f une fonction analytique et uniforme dans un domaine D de C
• soient z et z0 deux points de D
• soit C un cercle de centre z0 et de rayon δ > |z − z0|
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f(z) =
1

2iπ

∫
C

f(w)

w − z
dw

1

w − z
− 1

w − z0
=

z − z0

(w − z)(w − z0)

1

w − z
=

1

w − z0
+

(
z − z0

w − z0

)
1

w − z
1

w − z
=

1

w − z0
+

(
z − z0

w − z0

)(
1

w − z0
+

(
z − z0

w − z0

)
1

w − z

)
1

w − z
=

1

w − z0
+

z − z0

(w − z0)2
+

(z − z0)2

(w − z)2
× 1

w − z
1

w − z
=

1

w − z0
+

z − z0

(w − z0)2
+

(z − z0)2

(w − z)3
+

(z − z0)3

(w − z)3
× 1

w − z

1

w − z
=

(
n−1∑
k=0

(z − z0)k

(w − z0)k+1

)
+

(z − z0)n

(w − z0)n
× 1

w − z

Nous allons maintenant utiliser la 1ère formule intégrale de Cauchy :

f(z) =
n−1∑
k=0

(z − z0)k

2iπ

∫
C

f(w)

w − z
dw +

1

2iπ

∫
C

(z − z0)nf(w)

(w − z0)n(w − z)
dw

Or
f (n)(z) =

n!

2iπ

∫
C

f(w)

(w − z)n+1
dw

Donc

f(z) =

n−1∑
k=0

(z − z0)k

k!
f (k)(z0) +

1

2iπ

∫
C

(z − z0)nf(w)

(w − z0)n(w − z)
dwh

3. à vous de jouer !
4. l’absolue convergence implique la convergence
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Si nous pouvons trouver à quelle condition lim
n→∞

Xn(z) = 0, nous aurons trouvé le domaine
de convergence de la série entière. Pour cela, on pose :

Xn(z) =
1

2iπ

∫
C

(z − z0)nf(w)

(w − z0)n(w − z)
dw

|Xn(z)| = 1

2π

∣∣∣∣∫
C

(z − z0)nf(w)

(w − z0)n(w − z)
dw

∣∣∣∣ ≤ 1

2π
sup
w∈C

(∣∣∣∣ z − z0

w − z0

∣∣∣∣)n |f(w)|
|w − z|

× 2π δ

avec
1

|w − z0|
= δ

Or nous savons :
|z − z0|
|w − z0|

= γ < 1

Par ailleurs, sur C nous avons |f(w)| < M ; ainsi que |w − z| = |w − z0 − (z − z0)|. On
applique ensuite l’inégalité triangulaire, et nous obtenons :

||w − z0| − |z − z0|| ≤ |(w − z0)− (z − z0)| ≤ |w − z0|+ |z − z0|

donc :
δ − |z − z0| ≤ |w − z0|

Finalement, nous trouvons :

|Xn(z)| ≤ γnM

δ − |z − z0|
δ avec γ < 1

Ainsi : lim
n→+∞

|Xn(z)| = 0 si |z − z0| 6= δ

Une fonction f analytique dans un domaine D est décomposable en série de Taylor autour de
tout point z0 de D.

f(z) =

∞∑
k=0

f (k)(z0)

k!
(z − z0)k

Cette série converge sur tout disque centré en z0, entièrement contenu dans D.

Dans le cas d’une fonction méromorphe 5 le rayon de convergence est la distance de z0 au point
singulier le plus proche.

Exemple :

arctan(z) = z − z3

3
+
z5

5
− · · · |z| < 1

arctant(z) =
1

2i
Log

(
1 + iz

1− iz

)

5. Une fonction méromorphe est une fonction analytique et uniforme sur un domaine D à l’exception d’un
ensemble dénombrable de points singuliers isolés.

Un ensemble dénombrable est un ensemble qui peut être mis en bijection avec les réels (par exemple R est
indénombrable tandis que N est dénombrable).
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3.7 Séries de Laurent

f est analytique et uniforme dans une couronne circulaire D.

D = {z ∈ C tel que ρ1 < |z − z0| < ρ2}

 

X 

     

D 

𝝆𝟐 

   

X 

    

Nous allons considérer Γ = γ2 − γ1.

D’après Cauchy, nous avons :
∫

Γ f(z)dz = 0
D’après la 1ère formule d’intégration de Cauchy :

f(z) =
1

2iπ

∫
Γ

f(w)

w − z
dw

f(z) =
1

2iπ

∫
γ2

f(w)

w − z
dw − 1

2iπ

∫
γ1

f(w)

w − z
dw

f(z) =
1

2iπ

∫
γ2

f(w)

w − z
dw +

1

2iπ

∫
γ1

f(w)

z − w
dw

Rappel :
1

w − z
=

(
n−1∑
k=0

(z − z0)k

(w − z0)k+1

)
+

(z − z0)n

(w − z0)n
× 1

w − z
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1

z − w
=

(
n−1∑
k=0

(w − z0)k

(z − z0)k+1

)
+

(w − z0)n

(z − z0)n
× 1

z − w

1

2iπ

∫
γ2

f(w)

w − z
dw =

(
n−1∑
k=0

(z − z0)k
1

2iπ

∫
γ2

f(w)

(w − z0)k+1
dw

)
+

1

2iπ

∫
γ2

(z − z0)nf(w)

(w − z0)n(w − z)
dw

1

2iπ

∫
γ1

f(w)

z − w
dw =

(
n−1∑
k=0

1

(z − z0)k+1

1

2iπ

∫
γ1

(w − z0)kf(w) dw

)
+

1

2iπ

∫
γ1

(w − z0)nf(w)

(z − z0)n(z − w)
dw

b Si 1
2iπ

∫
γ2

(z−z0)nf(w)
(w−z0)n(w−z) dw tend vers 0 si lorsque |z − z0| < ρ2 quand n tend vers +∞.

Si 1
2iπ

∫
γ1

(w−z0)nf(w)
(z−z0)n(z−w) dw tend vers 0 si lorsque |z − z0| < ρ1 quand n tend vers +∞.

En clair, ces deux quantités tendent vers 0 si z ∈ D 6.

1

2iπ

∫
gamma1

f(w)

z − w
=

−1∑
p=−∞

(z − z0)p
1

2iπ

∫
γ1

f(w)

(w − z0)p+1
dw

On a effectué un changement de variable, nous avons donc maintenant : p = −(k + 1) d’où
également k = −(p+ 1).

On a alors :

f(z) =

+∞∑
k=−∞

(z − z0)k
1

2iπ

∫
g
amma

f(w)

(w − z0)k+1
dw

γ étant un contour, entièrement contenu dans la couronne D, entoure une fois z0.

Remarque : f est analytique sur D (γ est un contour tracé dans D entourant une fois z0),
donc d’après Cauchy on a :∫

γ1

f(w)

w − z0
dw =

∫
γ2

f(w)

w − z0
dw =

∫
γ

f(w)

w − z0
dw

On a donc

f(z) =
+∞∑

k=−∞
(z − z0)k

1

2iπ

∫
g
amma

f(w)

(w − z0)k+1
dw

Soit :
f(z) = · · ·+ a−2

(z − z0)2
+

a−1

z − z0︸ ︷︷ ︸
partie principale

+a0 + a1(z − z0) + a2(z − z0)2 + · · ·︸ ︷︷ ︸
partie analytique

C’est donc le développement en série de Laurent, avec ak = 1
2iπ

∫
γ

f(w)
(w−z0)k+1 dw.

6. cf : 3.6 Développement en série de Taylor pour la démonstration
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Développons en série de Laurent autour d’un point singulier isolé (sur un disque
épointé)

Soit f une fonction analytique et uniforme sur un domaine D à l’exception d’un point singulier
isolé z0.

? si z0 est un pôle d’ordre n : la partie principale du développement en série de Laurent
possède exactement n termes.

? si z0 est un point singulier supprimable : la partie principale du dévelopement en série de
Laurent est nulle.

? si z0 est un point singulier essentiel : la partie principale du dévelopement en série de
Laurent est une infinité de termes non-nuls

3.8 Résidus

Soit f une fonction développée en série de Laurent sur un disque épointé (de centre z0). Soit
γ un contour entourant z0. ∫

γ
f(z) dz = 2iπa−1 = 2iπRes(f, z0)

On nomme a−1 le résidu de la fonction au point z0 ; on le note Res(f, z0).

3.8.1 Théorème des Résidus

Soit f une fonction méromorphe dans un domaine D.∫
γ
f(z) dz =

n∑
k=1

∫
γk

f(z) dz =
n∑
k=1

(2iπRes(f, zk))

3.8.2 Calculs pratique des résidus

Nous allons chercher des moyens simples pour calculer le terme a−1 du développement en
série de Laurent autour d’un point singulier isolé.
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[?] si z0 est un pôle simple

f(z) =
a−1

z − z0
+ a0 + a1(z − z0) + · · ·

lim z → z0f(z) =∞

lim z → z0(z − z0)f(z) = a−1

Si f est une fraction rationnelle, nous pouvons simplifier le calcul. Nous avons donc z0 un
pôle simple, le numérateur peut donc s’écrire P (z) et le dénominateur Q(z) avec P (z0) 6= 0, et
Q(z) = (z − z0)Q1(z) et Q1(z) 6= 0.

f(z) =
P (z)

Q(z)

a−1 = lim
z→z0

(z − z0)f(z) = lim
z→z0

P (z)

Q1(z)
=

P (z0)

Q1(z0)

On a :

Q(z) = (z − z0)Q1(z)

Q′(z) = (z − z0)Q′1(z) +Q1(z)

Q′(z0) = Q1(z0)

Donc :

a−1 = lim
z→z0

P (z)

Q′(z)
=
P (z0)

Q′(z0)

[?] si z0 est un pôle multiple

f(z) =
a−n

(z − z0)

n
+ · · ·+ a−1

z − z0
+ a0 + · · ·

(z − z0)nf(z) = a−n + a−(n−1) + · · ·+ a−1(z − z0)n−1 + a0(z − z0)n + · · ·

dn−1

dzn−1

(
(z − z0)nf(z)

)
= (n− 1)!× a−1 +

n!

1!
× a0(z − z0) + · · ·

lim
z→z0

(
dn−1

dzn−1

(
(z − z0)nf(z)

))
= (n− 1)!× a−1

1

(n− 1)!
× lim
z→z0

(
dn−1

dzn−1

(
(z − z0)nf(z)

))
= a−1
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[?] si z0 est un point singulier essentiel

Il n’y a pas de moyen systématique d’obtenir le résidu (ça ne veut pas dire que c’est difficile ! !).
Il faut déterminer la série de Laurent.

exemple : e1/z autour de z = 0

ew = 1 + w +
w2

2!
+ w33! +

w4

4!
+ · · ·

e1/z = 1 +
1

z
+

1

z22!
+

1

z33!
+ · · ·
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Annexe A

Construction d’une fonction analytique

Posons P1(x, y) = e−x(xsin(y) + ycos(y))

1. A quelle condition P1(x, y) peut-elle être la partie réelle d’une fonction analytique de z =
x+ iy ?

2. Vérifier cette condition

3. Construire une fonction P , semblable à P1 qui vérifie la condition ci-dessus

4. Déterminer Q(x, y) telle que f(z = x+ iy) = P (x, y) + iQ(x, y) soit analytique

5. Exprimer f en fonction de "z seulement".

1.
∂2P1

∂x2
+
∂2P1

∂y2
= 0

2. On ne peut pas construire une fonction analytique si la partie imaginaire et la partie réelle
(donc ici P et Q) ne sont pas harmoniques !

∂P1

∂x
(x, y) = −e−x

(
xsin(y) + ycos(y)

)
+ e−xsin(y)

= e−x
(
sin(y)(1− x)− ycos(y)

)
∂2P1

∂x2
(x, y) = e−x

(
− sin(y)(1− x) + ycos(y)

)
− e−xsin(y)

= e−x
(
sin(y)(x− 2) + ycos(y)

)
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∂P1

∂y
(x, y) = e−x

(
cos(y)(x+ 1)− ysin(y)

)
∂2P1

∂y2
(x, y) = e−x

(
sin(y)(−2− x)− ycos(y)

)

On remarque que P1 n’est pas harmonique, la condition n’est donc pas vérifiée. La fonction
P1 n’est pas analytique. Pour y remédier, nous allons changer légèrement cette fonction.
Apparemment il n’y a qu’un problème de signe.

3. On pose P (x, y) = e−x
(
xsin(y)−ycos(y)

)
. Après avoir refait le calcul des dérivées partielles

de P , on obtient :

∂2P1

∂x2
(x, y) = e−x

(
sin(y)(x− 2)-ycos(y)

)
∂2P1

∂y2
(x, y) = e−x

(
sin(y)(+2− x)+ycos(y)

)

4.
∂P

∂x
=
∂Q

∂y
et

∂P

∂y
= −∂Q

∂x

Nous allons maintenant intégrer une de ces deux équations pour déterminer l’expression
de Q. Mais attention, quand on intègre une dérivée, on obtient une fonction juste à une
constante près ; mais dans le cas des dérivées partielles, cette constante est une fonction
des autres variables (ici ce sera une fonction de x). Fainéant comme nous sommes, nous
choisissons la facilité, on intègre la première expression.

P (x, y) = e−x
(
− cos(y) + ysin(y) + cos(y) + xcos(y)

)
+ constante

N’oublions pas que constante = g(x). Maintenant, on dérive pour déterminer g(x).

∂Q

∂x
= e−x

(
cos(y)− ysin(y)− xcos(y)

)
+ g′(x)

Par identification avec −∂P
∂y on obtient g′(x) = 0⇒ g(x) = K ∈ R

5. On cherche f de sorte qu’il ne s’exprime qu’avec z. Cette fonction est donc valable pour
tout z et donc en particulier avec z = x et y = 0 .

f(z) = e−x
(
xsin(y)− ycos(y)

)
+ i−x

(
xcos(y) + ysin(y)

)
+ iK

f(z) = ie−x(x) + iK

f(z) = iz−z + iK
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Annexe B

Formule de Green-Riemann en
coordonnées cartésienens et polaires

Ce document annexe a été rédigé par Guy Cathebras. Vous pouvez retrouver ce document
sur l’Intranet. Il s’agit de la formule de Green-Riemann déclinée en coordonnées cartésiennes et
polaires.

1. Formule de Stokes-Ampères

Soit C une courbe fermée de l’espace. Soit S une surface, non fermée, s’appuyant sur C et
soit
−−−→
V (M) un champ de vecteur.
On démontre et nous admettrons que la circulation de

−−−→
V (M) le long de C est égale au flux

de son rotationnel à travers S. Ce qui s’écrit :∫
C

−−−→
V (M).

−−→
dM =

∫∫
S

−→
rot
−−−→
V (M).

−→
dS

Dans cette expression,
−−→
dM =

−−−→
T (M)ds où

−−−→
T (M) est le vecteur tangent unitaire à la courbe

C au point M et ds est la différentielle de l’abscisse curviligne.
De son côté,

−→
dS est un vecteur normal à la surface S, dont la norme est égale à l’élément

d’aire et dont la direction est fixée par le sens de parcours de la courbe C (c’est ce que l’on
appelle la règle du tire-bouchon).

2. Formule de Green-Riemann en coordonées cartésiennes

Considérons dans un espace rapporté à un repère orthonormé (O,~ı,~,~k) le cas où C et S sont
entièrement contenues dans le plan (O,~ı,~) de même que le vecteur

−−−→
V (M). Posons :

−−−→
V (M) = P (x, y)~ı+Q(x, y)~

D’où l’on tire immédiatement que :

−→
rot
−−−→
V (M) =

(∂Q
∂x
− ∂P

∂x

)
~k
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Parce que l’on est en coordonnées cartésiennes, on a :

−−→
dM = dx~ı+ dy ~+ dz ~k

Parce que, de plus S est entièrement dans le plan (O,~ı,~), on a :

−→
dS = dx dy ~k

Dans ces conditions,

−−−→
V (M).

−−→
dM = P (x, y)dx+Q(x, y)dy

−→
rot
−−−→
V (M).

−→
dS =

(
∂Q

∂x
− ∂P

∂x

)
dx dy

Et la formule de Stokes devient la formule de Green-Riemann :∫
C
P (x, y)dx+Q(x, y)dy =

∫∫
S

(
∂Q

∂x
− ∂P

∂x

)
dx dy

3. Formule de Green-Riemann en coordonées polaires

Considérons maintenant le cas où C et S sont définies en coordonées polaires, chaque point
de l’espace étant repéré en coordonnées cylindriques par un triplé (ρ, θ, z). De la même façon que
précédemment, posons : −−−→

V (M) = U(ρ, θ)−→ur + V (ρ, θ)−→uθ
D’où l’on tire immédiatement que :

−→
rot
−−−→
V (M) =

1

ρ

(
∂(ρV )

∂ρ
− ∂U

∂θ

)
~k

Parce que l’on est en coordonnées cylindriques, on a :

−−→
dM = dρ−→ur + ρdθ−→uθ + dz~k

Parce que, de plus, S est entièrement dans le plan (O,−→ur,−→uθ), on a :

−→
dS = ρdρ dθ ~k

Dans ces conditions,

−−−→
V (M).

−−→
dM = U(ρ, θ)dρ+ ρV (ρ, θ)dθ

−→
rot
−−−→
V (M).

−→
dS =

1

ρ

(
∂(ρV )

∂ρ
− ∂U

∂θ

)
ρdρ dθ

=

(
∂(ρV )

∂ρ
− ∂U

∂θ

)
dρ dθ
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Et la formule de Stokes devient la formule de Green-Riemann en coordonnées polaires :∫
C
U(ρ, θ)dρ+ ρV (ρ, θ)dθ =

∫∫
S

(
∂(ρV )

∂ρ
− ∂U

∂θ

)
dρ dθ

Nous pourrions nous arrêter là. Posons cependantW (ρ, θ) = ρV (ρθ). Nous voyons alors que :∫
C
U(ρ, θ)dρ+W (ρ, θ)dθ =

∫∫
S

(
∂W

∂ρ
− ∂U

∂θ

)
dρ dθ

C’est-à-dire que la même formule de Green-Riemann est applicable en coordonnées carté-
siennes et en coordonnées polaires !
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